激光与光电子学进展, 2012, 49 (2): 021702, 网络出版: 2011-11-28  

多种长焦区聚焦超声采集频率的人体甲状腺光声成像

Photoacoustic Imaging of Human Thyroid Based on Long-Focal-Zone Focused Transducers with Different Frequencies
曾志平 1,2,3,*谢文明 1,2,3李莉 1,2,3李志芳 1,2,3李晖 1,2,3陈树强 4
作者单位
1 医学光电科学与技术教育部重点实验室, 福建 福州 350007
2 福建省光子技术重点实验室, 福建 福州 350007
3 福建师范大学物理与光电信息科技学院, 福建 福州 350007
4 福建医科大学附属第一医院, 福建 福州 350007
摘要
临床上常规的超声成像对甲状腺结节进行诊断时存在误诊和漏诊。研究了利用多种采集频率的长焦区聚焦换能器进行光声成像的方法。在模拟样品里埋入不同尺寸的血块模拟病变组织,采用不同中心频率的换能器对模拟样品进行光声成像,然后将血液注入正常人体甲状腺内部形成两处瘀血区,模拟病变甲状腺组织,经二维扫描重构出模拟病变甲状腺组织的三维光声图像。结果表明,不同频率的超声换能器对不同尺寸病灶体的探测灵敏度存在较大差异,5 MHz的宽带换能器对几百微米直至毫米量级大小的病灶体均具有良好的灵敏度。获得了甲状腺及其内部两处瘀血区域的较高分辨率和对比度的三维图像。此项技术有望与超声成像技术结合,进一步提高甲状腺疾病诊断的准确率。
Abstract
There exist misdiagnosis and missed diagnosis with routine ultrasound imaging of thyroid nodules in present clinic. A novel method employing a series of long-focal-zone focused transducers with different frequencies for photoacoustic imaging (PAI) is presented. Some blood clots in different sizes are embedded in tissue-mimicking phantom to form a phantom containing specific pathological lesions. Transducers with different frequencies are used to image this phantom photoacoustically. Furthermore, blood is injected into normal human thyroid tissue, forming two blood stasis areas. Three-dimensional imaging is available by performing two-dimensional scanning through the tissue. We demonstrate that transducers with different frequencies have different sensitivities in detecting lesions of different sizes. The broadband transducer with a center frequency of 5 MHz has a better sensitivity in detecting lesions ranging from a few hundred microns to several millimeters. Therefore, a high resolution and excellent contrast three-dimensional image of the thyroid tissue with two blood stasis areas is obtained. This technique integrated with ultrasound imaging has the potential to increase the diagnostic accuracy in clinical thyroid nodule diagnosis.
参考文献

[1] C. Zhou, Y. Wang, A. D. Aguirre et al.. Ex vivo imaging of human pathologies with integrated optical coherence tomography and optical coherence microscopy [J]. J. Biomed. Opt., 2010, 15(1): 016001

[2] Liang Song, Konstantin Maslov, Lihong V. Wang. Multifocal optical-resolution photoacoustic microscopy in vivo [J]. Opt. Lett., 2011, 36(7): 1236~1238

[3] S. Hu, K. Maslov, L. V. Wang. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed [J]. Opt. Lett., 2011, 36(7): 1134~1136

[4] 卢涛, 李秀娟, 毛慧勇 等. 基于维纳滤波反卷积的光声成像 [J]. 光学学报, 2009, 29(7): 1854~1857

    Lu Tao, Li Xiujuan, Mao Huiyong et al.. Photoacoustic tomography with Wiener filter deconvolution algorithm [J]. Acta Optica Sinica, 2009, 29(7): 1854~1857

[5] 王毅, 周红仙. 检测参数对脉冲光声法测量绝对吸收系数准确性的影响 [J]. 光学学报, 2009, 29(12): 3391~3394

    Wang Yi, Zhou Hongxian. Theoretical analysis of the influence of measurement parameters on the measurement accuracy of optical absorption coefficient with pulsed photoacoustic method [J]. Acta Optica Sinica, 2009, 29(12): 3391~3394

[6] 张建, 杨思华. 基于多波长激发的光声组分成像[J]. 中国激光, 2011, 38(1): 01040001

    Zhang Jian, Yang Sihua. Photoacoustic component imaging based on multi-spectral excitation [J]. Chinese J. Lasers, 2011, 38(1): 0104001

[7] B. Rao, K. Maslov, A. Danielli et al.. Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution [J]. Opt. Lett., 2011, 36(7): 1137~1139

[8] F. Kong, R. H. Silverman, L. Liu et al.. Photoacoustic-guided convergence of light through optically diffusive media [J]. Opt. Lett., 2011, 36(11): 2053~2055

[9] 李长辉, 叶硕奇, 任秋实. 光声分子影像[J]. 激光与光电子学进展, 2011, 48(5): 051701

    Li Changhui, Ye Shuoqi, Ren Qiushi. Photoacoustic molecular imaging [J]. Laser & Optoelectronics Progress, 2011, 48(5): 051701

[10] E. Olsson, P. Gren, M. Sj Dahl. Photoacoustic holographic imaging of absorbers embedded in silicone [J]. Appl. Opt., 2011, 50(17): 2551~2558

[11] D. K. Yao, K. Maslov, K. K. Shung et al.. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA [J]. Opt. Lett., 2010, 35(24): 4139~4141

[12] R. H. Silverman, F. Kong, Y. C. Chen et al.. High-resolution photoacoustic imaging of ocular tissues [J]. Ultrasound Med Biol., 2010, 36(5): 733~742

[13] L. V. Wang. Prospects of photoacoustic tomography [J]. Med. Phys., 2008, 35(12): 5758~5767

[14] A. Aguirre, Y. Ardeshirpour, M. M. Sanders et al.. Potential role of coregistered photoacoustic and ultrasound imaging in ovarian cancer detection and characterization [J]. Translational Oncology, 2011, 4(1): 29~37

[15] Y. Wang, S. Hu, K. Maslov et al.. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure [J]. Opt. Lett., 2011, 36(7): 1029~1031

[16] S. Jiao, Z. Xie, H. F. Zhang et al.. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography [J]. Opt. Lett., 2009, 34(19): 2961~2963

曾志平, 谢文明, 李莉, 李志芳, 李晖, 陈树强. 多种长焦区聚焦超声采集频率的人体甲状腺光声成像[J]. 激光与光电子学进展, 2012, 49(2): 021702. Zeng Zhiping, Xie Wenming, Li Li, Li Zhifang, Li Hui, Chen Shuqiang. Photoacoustic Imaging of Human Thyroid Based on Long-Focal-Zone Focused Transducers with Different Frequencies[J]. Laser & Optoelectronics Progress, 2012, 49(2): 021702.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!