激光生物学报, 2019, 28 (5): 415, 网络出版: 2019-11-14  

基于涡度相关法的农田生态系统碳通量研究进展

Research Progress on Carbon Flux in Agro-ecosystem Based on Eddy Covariance System
作者单位
湖南农业大学农学院, 长沙 410128
摘要
涡度相关法作为国际上公认的碳通量测定的标准方法, 在农田生态系统碳通量研究领域具有广阔的空间。本研究旨在总结涡度相关法的农田生态系统碳通量最新研究成果, 为涡度相关法与农田生态系统碳通量研究提供参考。文章综述了国内外基于涡度相关技术的农田生态系统碳通量研究现状, 重点总结了其在时间变化、驱动因子、生产力模型、数据处理等方面的最新研究成果。经了解发现涡度相关技术对农田生态系统碳通量的时间变化特征研究较多, 且众多研究结果表明在单一种植模式下农田碳通量的日变化和季节变化呈显著单峰“U”型趋势, 在多熟种植模式下季变化呈“W”型, 但对种植模式的碳通量研究缺乏区域代表性; 同时驱动因子研究集中在温度、光照、水分等环境因素对农田碳通量的影响方面, 对环境因子与农艺措施之间的关系研究较少; 且对于通量夜间数据的处理和无效、缺失数据的剔除与插补缺乏统一的标准。因此本文认为区域典型种植模式的长期定位监测、多因子协同分析、数据质量监控等方面具有较大研究空间。
Abstract
As an internationally recognized standard method for carbon flux determination, the eddy covariance method has a broad space in the field of agro-ecosystem carbon flux studies. To provide references for eddy covariance method and carbon flux research in agro-ecosystem, the study aims to summarize the latest research results of agro-ecosystem carbon flux based on eddy covariance method. This paper reviews the research status of carbon flux over agro-ecosystem based on the eddy covariance method at home and abroad, and also put emphasis on the latest research results on the temporal variation characteristics, driving factors, productivity models and data processing. Through literature research, it is found that the eddy covariance method has many researches on the temporal variation characteristics of carbon flux in agro-ecosystems, and many research results show that the daily and seasonal changes of farmland carbon flux show a single-peak “U” trend in single planting mode, while in the multi-crop planting mode, the seasonal change is “W” type. But the carbon flux research on planting mode lacks regional representation. At the same time, the driving factor research focuses on the influence of environmental factors such as temperature, light and moisture on farmland carbon flux. Less research on the relationship between environmental factors and agronomic measures was done. And there is a lack of uniform standards for the processing of flux night data and elimination or interpolation of the invalidation and missing data. Therefore, this paper points out that the long-term continuous monitoring at the typical planting mode, multi-factor collaborative analysis, data quality control should be the important research directions.
参考文献

[1] 于贵瑞, 张雷明, 孙晓敏, 等. 亚洲区域陆地生态系统碳通量观测研究进展[J]. 中国科学·D辑: 地球科学, 2004, 34(S2): 15-29.

    YU Guirui, ZHANG Leiming, SUN Xiaomin, et al. Advances in the observation of carbon flux in terrestrial ecosystems in Asia[J]. Science in China Series·D: Earth Sciences, 2004, 34(S2): 15-29.

[2] 于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J]. 地理科学进展, 2014, 33(7): 903-917.

    YU Guirui, ZHANG Leiming, SUN Xiaomin. Progresses and prospects of chinese terrestrial ecosystem flux observation and research network(ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917.

[3] 李晶, 王明星, 王跃思, 等. 农田生态系统温室气体排放研究进展[J]. 大气科学, 2003, 27(4): 740-749.

    LI Jing, WANG Mingxing, WANG Yuesi, et al. Advance of researches on greenhouse gases emission from chinese agricultural ecosystem[J]. Chinese Journal of Atmospheric Science, 2003, 27(4): 740-749.

[4] 刘昱, 陈敏鹏, 陈吉宁. 农田生态系统碳循环模型研究进展和展望[J]. 农业工程学报, 2015, 31(3): 1-9.

    LIU Yu, CHEN Minpeng, CHEN Jining. Progress and perspectives in studies on agro-ecosystem carbon cycle model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 1-9.

[5] 朱咏莉. 亚热带稻田生态系统CO2通量研究[D]. 咸阳: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2005.

    ZHU Yongli. Carbon dioxide exchange between paddy ecosystem and the atmosphere in the subtropical region[D]. Xianyang: Chinese Academy of Sciences and Ministry of Education (Research Center of Soil and Water Conservation and Ecological Environment), 2005.

[6] 于贵瑞, 伏玉玲, 孙晓敏, 等. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J]. 中国科学·D辑: 地球科学, 2006, 36(S1): 1-21.

    YU Guirui, FU Yuling, SUN Xiaomin, et al. Research progress and development ideas of China’s terrestrial ecosystem flux observation and research network (ChinaFlux)[J]. Science in China Series·D: Earth Sciences, 2006, 36(S1): 1-21.

[7] BALDOCCHI D. Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany, 2008, 56(1): 1-26.

[8] 王进, 白洁, 陈曦, 等. 新疆绿洲覆膜滴灌棉田碳通量特征研究[J]. 农业机械学报, 2015, 46(2): 70-78, 136.

    WANG Jin, BAI Jie, CHEN Xi, et al. Carbon fluxes in cotton field with plastic mulched drip irrigation in Xinjiang oasis[J]. Journal of Agricultural Machinery, 2015, 46(2): 70-78, 136.

[9] 曹元元, 王娟, 王建林. 玉米农田生态系统水碳通量日变化特征研究[J]. 中国农学通报, 2016, 32(9): 137-141.

    CAO Yuanyuan, WANG Juan, WANG Jianlin. Diurnal change characteristics of H2O and CO2 flux of corn farmland ecosystem[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 137-141.

[10] 蔡旭, 张凤华, 杨海昌. 新疆高产棉田生态系统NEE变化及其影响因素[J]. 干旱区资源与环境, 2016, 30(7): 59-64.

    CAI Xu, ZHANG Fenghua, YANG Haichang. Net ecosystem exchange changes of agricultural ecosystem and its influencing factors in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2016, 30(7): 59-64.

[11] 孙小祥, 常志州, 杨桂山, 等. 长三角地区稻麦轮作生态系统净碳交换及其环境影响因子[J]. 中国生态农业学报, 2015, 23(7): 803-811.

    SUN Xiaoxiang, CHANG Zhizhou, YANG Guishan, et al. Characteristics of net ecosystem exchange and environmental factors of rice-wheat rotation system in the Yangtze River delta of China[J]. Chinese Journal of Eco-agriculture, 2015, 23(7): 803-811.

[12] 徐昔保, 杨桂山, 孙小祥. 太湖流域典型稻麦轮作农田生态系统碳交换及影响因素[J]. 生态学报, 2015, 35(20): 6655-6665.

    XU Xibao, YANG Guishan, SUN Xiaoxiang. Analysis of net ecosystem CO2 exchange (NEE) in the rice-wheat rotation agroecosystem of the lake Taihu basin,China[J]. Acta Ecologica Sinica, 2015, 35(20): 6655-6665.

[13] WANG Y, HU C, DONG W, et al. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2015, 206: 33-45.

[14] 魏甲彬, 徐华勤, 周玲红, 等. “双季稻-冬闲田”生态系统碳交换动态变化及其影响因素[J]. 农业环境科学学报, 2018, 37(5): 1035-1044.

    WEI Jiabin, XU Huaqin, ZHOU Linghong, et al. Seasonal variation in carbon exchange and its modulating factors of a double cropping rice ecosystem in southern China[J]. Journal of Agro-environment Science, 2018, 37(5): 1035-1044.

[15] 黄国勤, 孙丹平. 中国多熟种植的发展现状与研究进展[J]. 中国农学通报, 2017, 33(3): 35-43.

    HUANG Guoqin, SUN Danping. Development situation and research progress of multiple cropping in China[J]. Chinese Agricultural Science Bulletin, 2017, 33(3): 35-43.

[16] 薛红喜, 李峰, 李琪, 等. 基于涡度相关法的中国农田生态系统碳通量研究进展[J]. 南京信息工程大学学报(自然科学版), 2012, 4(3): 226-232.

    XUE Hongxi, LI Feng, LI Qi, et al. Research progress on carbon flux over agro-ecosystem based on the eddy covariance method in China[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2012, 4(3): 226-232.

[17] 王亚楠, 龙慧灵, 袁占良, 等. 基于涡度相关的黑河玉米生态系统生长季碳通量和固碳能力变化特征研究[J]. 河南农业科学, 2015, 44(8): 154-159.

    WANG Yanan, LONG Huiling, YUAN Zhanliang, et al. Carbon fluxes and carbon sequestration capacity variation of maize ecosystem in Heihe basin based on eddy covariance observation[J]. Journal of Henan Agricultural Sciences, 2015, 44(8): 154-159.

[18] 姜雨萌, 赵风华, 刘金秋, 等. 极端高温对冬小麦冠层碳同化的影响[J]. 中国生态农业学报, 2015, 23(10): 1260-1267.

    JIANG Yumeng, ZHAO Fenghua, LIU Jinqiu, et al. Effect of extreme heat on winter wheat canopy carbon assimilation[J]. Chinese Journal of Eco-agriculture, 2015, 23(10): 1260-1267.

[19] MACHADO C B, LIMA J R D S, ANTONINO A C, et al. Daily and seasonal patterns of CO2 fluxes and evapotranspiration in maize-grass intercropping[J]. Revista Brasileira De Engenharia Agrícola E Ambiental, 2016, 20(9): 777-782.

[20] LI X, LIU L, YANG H, et al. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region[J]. Plos One, 2018, 13(2): 1-18.

[21] 仲晓春, 陈雯, 刘涛, 等. 2001~2010年中国植被NPP的时空变化及其与气候的关系[J]. 中国农业资源与区划, 2016, 37(9): 16-22.

    ZHONG Xiaochun, CHEN Wen, LIU Tao, et al. Spatial and temporal change of vegetation net primary productivity and its relationship with climate from 2001 to 2010 in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(9): 16-22.

[22] 刘笑吟, 吴勇强, 刘诗梦, 等. 节水灌溉稻田不同土壤水分条件下水碳通量日变化特征[J]. 中国农村水利水电, 2016, (8): 93-96, 101.

    LIU Xiaoyin, WU Yongqiang, LIU Shimeng, et al. Diurnal variation of water and carbon fluxes of water-saving irrigation paddy fields under different soil moisture conditions[J]. China Rural Water and Hydropower, 2016, (8): 93-96, 101.

[23] BAI J, WANG J, CHEN X, et al. Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China[J]. Journal of Arid Land, 2015, 7(2): 272-284.

[24] GAO X, GU F, HAO W, et al. Carbon budget of a rainfed spring maize cropland with straw returning on the loess plateau, China[J]. Science of the Total Environment, 2017, 586: 1193-1203.

[25] GAO X, GU F, MEI X, et al. Carbon exchange of a rainfed spring maize cropland under plastic film mulching with straw returning on the loess plateau, China[J]. Catena, 2017, 158: 298-308.

[26] JANS W W, JACOBS C M, KRUIJT B, et al. Carbon exchange of a maize (Zea mays L.) crop: influence of phenology[J]. Agriculture, Ecosystems & Environment, 2010, 139(3): 316-324.

[27] WAGLE P, GOWDA P H, ANAPALLI S S, et al. Growing season variability in carbon dioxide exchange of irrigated and rainfed soybean in the Southern United States[J]. Science of the Total Environment, 2017, 593-594: 263-273.

[28] CHI J S, WALDO SARAH, PRESSLEY SHELLEY, et al. Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method[J]. Agricultural and Forest Meteorology, 2016, 218-219: 37-49.

[29] SHARMA S, RAJAN N, CUI S, et al. Seasonal variability of evapotranspiration and carbon exchanges over a biomass sorghum field in the Southern U.S. Great Plains[J]. Biomass and Bioenergy, 2017, 126(105): 392-401.

[30] 张志高, 袁征, 李贝歌, 等. 基于投入视角的河南省农业碳排放时空演化特征与影响因素分解[J]. 中国农业资源与区划, 2017, 38(10): 152-161.

    ZHANG Zhigao, YUAN Zheng, LI Beige, et al. Spatial-temporal evolution characteristics and factor decomposition on agricultural carbon emissions in Henan province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(10): 152-161.

[31] 方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001, 25(4): 414-419.

    FANG Jingyun, KE Jinhu,TANG Zhiyao, et al. Implications and estimations of four terrestrial productivity parameters[J]. Acta Phytoecologica Sinica, 2001, 25(4): 414-419.

[32] XIN Fengfei, XIAO Xiangming, ZHAO Bin, et al. Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images[J]. Remote Sensing of Environment, 2017, 190: 42-55.

[33] SHIHUA L, PING H, L BAOSHENG. Modeling of maize gross primary production using MODIS imagery and flux tower data[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(2): 110-118.

[34] LIU Z, WANG L, WANG S. Comparison of different GPP models in China using MODIS image and China flux data[J]. Remote Sensing, 2014, 6(10): 10215-10231.

[35] 杜启勇, 林爱文, 付醒. 基于遥感和美国碳通量观测数据的GPP模型比较研究[J]. 测绘与空间地理信息, 2018, 41(2): 138-141, 146.

    DU Qiyong, LIN Aiwen, FU Xing, et al. Comparison of multiple GPP models using remote sensing and American carbon flux data[J]. Geomatics & Spatial Information Technology, 2018, 41(2): 138-141, 146.

[36] 朱治林, 孙晓敏, 温学发, 等. 中国通量网(China FLUX)夜间CO2涡度相关通量数据处理方法研究[J]. 中国科学·D辑: 地球科学, 2006, 36(S1): 34-44.

    ZHU Zhilin, SUN Xiaomin, WEN Xuefa, et al. Research on data processing method of night CO2 vorticity correlation flux in China flux network[J]. Science in China Series·D: Earth Sciences, 2006, 36(S1): 34-44.

[37] 冯艾琳, 何洪林, 刘利民, 等. 基于多源数据的禹城农田生态系统冬小麦生育期识别方法比较研究[J]. 遥感技术与应用, 2016, 31(5): 958-965.

    FENG Ailin, HE Honglin, LIU Limin, et al. A comparison of multiple phenology data sources for estimating the main phenological phases of winter wheat in Yucheng station[J]. Remote Sensing Technology and Application, 2016, 31(5): 958-965.

[38] 杨剑锋, 杨小妮, 王俊花, 等. 黄土高原成龄苹果园生态系统CO2通量特征[J]. 环境科学, 2018, 39(5): 2339-2350.

    YANG Jianfeng, YANG Xiaoni, WANG Junhua, et al. Characteristics of CO2 flux in a mature apple (Malus demestica) orchard ecosystem on the loess plateau[J]. Environmental Science, 2018, 39(5): 2339-2350.

[39] ZHAO Xiaosong, HUANG Yao. A comparison of three gap filling techniques for eddy covariance net carbon fluxes in short vegetation ecosystems[J]. Advances in Meteorology, 2015, 75(3): 1-12.

[40] 姚玉刚, 蒋跃林, 李俊. 农田CO2通量观测的研究进展[J]. 中国农学通报, 2007, 23(6): 626-629.

    YAO Yugang, JIANG Yuelin, LI Jun. Advance on carbon dioxide flux observation of farmland[J].Chinese Agricultural Science Bulletin, 2007, 23(6): 626-629.

田容才, 文双雅, 阳会兵. 基于涡度相关法的农田生态系统碳通量研究进展[J]. 激光生物学报, 2019, 28(5): 415. TIAN Rongcai, WEN Shuangya, YANG Huibing. Research Progress on Carbon Flux in Agro-ecosystem Based on Eddy Covariance System[J]. Acta Laser Biology Sinica, 2019, 28(5): 415.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!