光学学报, 2016, 36 (8): 0814003, 网络出版: 2016-08-18   

激光冲击强化对AM50镁合金性能和结构的影响 下载: 535次

Effect of Laser Shock Processing on Property and Microstructure of AM50 Magnesium Alloy
作者单位
江苏大学机械工程学院, 江苏 镇江 212013
摘要
采用激光冲击强化(LSP)处理方法研究了激光冲击强化对AM50铸造镁合金深度方向的晶粒结构、显微硬度和残余应力的影响。结果表明,经过单次冲击强化后, 合金表层的显微硬度值、残余压应力值均有明显改善;在冲击强化层,原始粗晶明显细化,表层显微硬度值提高了19%,残余压应力达到-225 MPa,且显微硬度提高区、晶粒细化层及残余压应力层的深度明显增大;当冲击次数增加到2次时,显微硬度、晶粒尺寸和残余应力得到进一步改善。
Abstract
The method of laser shock processing (LSP) is used to investigate the effect of LSP on the grain structure, micro-hardness, and residual stress of the AM50 magnesium cast alloy along its depth direction. Results indicate that the micro-hardness and residual compressive stress of the alloy surface both have significant improvement after single LSP. On the LSP layer where original coarse grains are refined obviously, the surface micro-hardness value is increased by 19%, and the residual compressive stress is up to -225 MPa. Besides, the depths of the micro-hardness-improved area, grain-refined layer, and residual compressive stress layer are obviously increased. When the impact times is increased to two, the micro-hardness, grain size, and residual compressive stress are further improved.
参考文献

[1] 刘倩, 单忠德. 镁合金在汽车工业中的应用现状与发展趋势[J]. 铸造技术, 2007, 28(12): 1668-1671.

    Liu Qian, Shan Zhongde. Application and prospect of magnesium alloys in automotive industry[J]. Found Technology, 2007, 28(12): 1668-1671.

[2] Coy A E, Viejo F, Skeldon P, et al. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion[J]. Corrosion Science, 2010, 52(12): 3896-3906.

[3] Cao F Y, Shi Z M, Song G L, et al. Stress corrosion cracking of several hot-rolled binary Mg-X alloys[J]. Corrosion Science, 2015, 98: 6-19.

[4] Raman R K S, Jafari S, Harandi S E. Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review[J]. Engineering Fracture Mechanics, 2015, 137: 97-108.

[5] Zhang P, Ding W J, Lindemann J, et al. Mechanical properties of the hot-rolled Mg-12 Gd-3Y magnesium alloy[J]. Materials Chemistry and Physics, 2009, 118(2-3): 453-458.

[6] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review[J]. Journal of Alloys and Compounds, 2002, 336(1-2): 88-113.

[7] 汪志太, 林鑫, 曹永青, 等. 外部冷却条件对激光熔凝Ni-Sn合金反常共晶形成的影响[J]. 中国激光, 2014, 41(12): 1203006.

    Wang Zhitai, Lin Xin, Cao Yongqing, et al. External cooling condition effects on formation of anomalous eutectic in Ni-Sn alloy by laser remelting[J]. Chinese J Lasers, 2014, 41(12): 1203006.

[8] 张青来, 王荣, 张冰昕, 等. 激光冲击强化对AZ31镁合金力学性能和组织结构的影响[J]. 中国激光, 2015, 42(3): 0303001.

    Zhang Qinglai, Wang Rong, Zhang Bingxin, et al. Effect of laser shock processing on mechanical properties and mesostructures of AZ31 magnesium alloy[J]. Chinese J Lasers, 2015, 42(3): 0303001.

[9] 汪诚, 赖志林, 何卫锋, 等. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41(1): 0103001.

    Wang Cheng, Lai Zhilin, He Weifeng, et al. Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chinese J Lasers, 2014, 41(1): 0103001.

[10] 王江涛, 张永康, 陈菊芳, 等. 强激光冲击对7075铝合金等离子弧焊接头电化学腐蚀行为的影响[J]. 中国激光, 2015, 42(12): 1203006.

    Wang Jiangtao, Zhang Yongkang, Chen Jufang, et al. Effect of laser shock processing on electrochemical corrosion behavior of 7075 aluminum alloy plasma arc weldments[J]. Chinese J Lasers, 2015, 42(12): 1203006.

[11] 朱颖, 范博文, 郭伟, 等. 激光冲击次数对TA15微观组织和硬度的影响[J]. 北京航空航天大学学报, 2014, 40(4): 444-448.

    Zhu Ying, Fan Bowen, Guo Wei, et al. Influence of laser shock peening times on microstructure and hardness of TA15 titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4): 444-448.

[12] 熊毅, 何红玉, 罗开玉, 等. 激光冲击次数对高碳珠光体钢组织和显微硬度的影响[J]. 中国激光, 2013, 40(4): 0403006.

    Xiong Yi, He Hongyu, Luo Kaiyu, et al. Effect of laser shock processing times on microstructure and microhardness of high carbon pearlitic steel[J]. Chinese J Lasers, 2013, 40(4): 0403006.

[13] 李兴成, 张永康. 激光冲击次数对镁合金电化学特性的影响[J]. 激光技术, 2015, 39(4): 466-470.

    Li Xingcheng, Zhang Yongkang. Effect of laser shock times on electrochemical performance of AZ31 magnesium alloy[J]. Laser Technology, 2015, 39(4): 466-470.

[14] 张永康, 陈菊芳, 许仁军. AM50镁合金激光冲击强化实验研究[J]. 中国激光, 2008, 35(7): 1068-1072.

    Zhang Yongkang, Chen Jufang, Xu Renjun. Experimental research of laser shock strengthening AM50 magnesium alloy[J]. Chinese J Lasers, 2008, 35(7): 1068-1072.

[15] Zhang Y K, You J, Lu J Z, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24): 3947-3953.

[16] Luo K Y, Wang C Y, Sun G F, et al. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy[J]. Materials Science & Engineering A, 2016, 650: 110-118.

[17] Wang C, Shen X J, An Z B, et al. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy[J]. Materials and Design, 2016, 89: 582-588.

刘波, 罗开玉, 吴刘军, 鲁金忠. 激光冲击强化对AM50镁合金性能和结构的影响[J]. 光学学报, 2016, 36(8): 0814003. Liu Bo, Luo Kaiyu, Wu Liujun, Lu Jinzhong. Effect of Laser Shock Processing on Property and Microstructure of AM50 Magnesium Alloy[J]. Acta Optica Sinica, 2016, 36(8): 0814003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!