光学学报, 2019, 39 (1): 0126012, 网络出版: 2019-05-10   

基于整形飞秒激光脉冲的三维微纳制备 下载: 965次特邀综述

Three-Dimensional Microfabrication by Shaped Femtosecond Laser Pulses
乔玲玲 1,*储蔚 1,2,*王哲 1,3程亚 1,2,*
作者单位
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 华东师范大学物理与材料科学学院极端光机电实验室, 上海 200241
3 上海科技大学物质科学与技术学院, 上海 200031
引用该论文

乔玲玲, 储蔚, 王哲, 程亚. 基于整形飞秒激光脉冲的三维微纳制备[J]. 光学学报, 2019, 39(1): 0126012.

Lingling Qiao, Wei Chu, Zhe Wang, Ya Cheng. Three-Dimensional Microfabrication by Shaped Femtosecond Laser Pulses[J]. Acta Optica Sinica, 2019, 39(1): 0126012.

参考文献

[1] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3: e149.

[2] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

[3] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

[4] Momma C, Chichkov B N, Nolte S, et al. Short-pulse laser ablation of solid targets[J]. Optics Communications, 1996, 129(1/2): 134-142.

[5] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[6] Joglekar A P, Liu H H, Meyhöfer E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5856-5861.

[7] SugiokaK, ChengY. Fundamentals of femtosecond laser processing[M] ∥Femtosecond laser 3D micromachining for microfluidic and optofluidic applications. London: Springer2014: 19- 33.

[8] Nolte S, Will M, Burghoff J, et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics[J]. Applied Physics A, 2003, 77(1): 109-111.

[9] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025.

[10] Watanabe W, Sowa S, Tamaki T, et al. Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser[J]. Japanese Journal of Applied Physics, 2006, 45(29): L765-L767.

[11] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro-and nanofabrication[J]. Applied Physics Reviews, 2014, 1(4): 041303.

[12] Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 2012, 12(4): 746-749.

[13] Gan Z, Cao Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

[14] Shverdin M Y, Goda S N, Yin G Y, et al. Coherent control of laser-induced breakdown[J]. Optics Letters, 2006, 31(9): 1331-1333.

[15] Dachraoui H, Husinsky W. Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form[J]. Physical Review Letters, 2006, 97(10): 107601.

[16] Sahl S J, Hell S W, Jakobs S. Fluorescence nanoscopy in cell biology[J]. Nature Reviews Molecular Cell Biology, 2017, 18(11): 685.

[17] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

[18] Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 2003, 28(1): 55-57.

[19] Beresna M. Gecevi cˇius M, Kazansky P G. Ultrafast laser direct writing and nanostructuring in transparent materials [J]. Advances in Optics and Photonics, 2014, 6(3): 293-339.

[20] Sowa S, Watanabe W, Tamaki T, et al. Symmetric waveguides in poly (methyl methacrylate) fabricated by femtosecond laser pulses[J]. Optics Express, 2006, 14(1): 291-297.

[21] Ams M, Marshall G D, Spence D J, et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optical Express, 2005, 13(15): 5676-5681.

[22] Marshall G D, Politi A. Matthews J C F, et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 2009, 17(15): 12546-12554.

[23] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser structured LiNbO3[J]. Applied Physics A, 2007, 89(1): 127-132.

[24] Okhrimchuk A G, Shestakov A V, Khrushchev I, et al. Depressed cladding, buried waveguide laser formed in a YAG∶Nd 3+ crystal by femtosecond laser writing [J]. Optics Letters, 2005, 30(17): 2248-2250.

[25] Lancaster D G, Gross S, Ebendorff-Heidepriem H, et al. Fifty percent internal slope efficiency femtosecond direct-written Tm 3+:ZBLAN waveguide laser [J]. Optics Letters, 2011, 36(9): 1587-1589.

[26] Long X W, Bai J, Zhao W, et al. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams[J]. Optics Letters, 2012, 37(15): 3138-3140.

[27] Beckmann D, Schnitzler D, Schaefer D, et al. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation[J]. Optics Express, 2011, 19(25): 25418-25425.

[28] Caulier O, Le Coq D, Bychkov E, et al. Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation[J]. Optics Letters, 2013, 38(20): 4212-4215.

[29] Liao Y, Qi J, Wang P, et al. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam[J]. Scientific Reports, 2016, 6: 28790.

[30] Qi J, Wang P, Liao Y, et al. Fabrication of polarization-independent singlemode waveguides in lithium niobate crystal with femtosecond laser pulses[J]. Optical Materials Express, 2016, 6(8): 2554-2559.

[31] Wang P, Qi J, Liu Z M, et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, 2017, 7: 41211.

[32] Zhu G, Van Howe J, Durst M, et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 2005, 13(6): 2153-2159.

[33] Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy[J]. Optics Express, 2005, 13(5): 1468-1476.

[34] He F, Xu H, Cheng Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 2010, 35(7): 1106-1108.

[35] He F, Cheng Y, Lin J T, et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining[J]. New Journal of Physics, 2011, 13(8): 083014.

[36] Tan Y X, Wang Z H, Chu W, et al. High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions[J]. Optical Materials Express, 2016, 6(12): 3787-3793.

[37] Vitek D N, Block E, Bellouard Y, et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials[J]. Optics Express, 2010, 18(24): 24673-24678.

[38] Vitek D N, Adams D E, Johnson A, et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials[J]. Optics Express, 2010, 18(17): 18086-18094.

[39] Kim D. So P T C. High-throughput three-dimensional lithographic microfabrication[J]. Optics Letters, 2010, 35(10): 1602-1604.

[40] Chu W, Tan Y X, Wang P, et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 2018, 3(5): 1700396.

[41] Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819.

[42] Li G H, Ni J L, Xie H Q, et al. Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses[J]. Optics Letters, 2014, 39(4): 961-964.

[43] Block E, Greco M, Vitek D, et al. Simultaneous spatial and temporal focusing for tissue ablation[J]. Biomedical Optics Express, 2013, 4(6): 831-841.

[44] Kammel R, Ackermann R, Thomas J, et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 2014, 3: e169.

[45] Cumming B P, Jesacher A, Booth M J, et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate[J]. Optics Express, 2011, 19(10): 9419-9425.

[46] Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 2010, 18(20): 21090-21099.

[47] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189.

[48] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

[49] Malinauskas M, Farsari M, Piskarskas A, et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances[J]. Physics Reports, 2013, 533(1): 1-31.

[50] Wang P, Chu W, Li W B, et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses[J]. Optics Letters, 2018, 43(15): 3485-3488.

[51] Durnin J. Miceli Jr J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499.

[52] Duocastella M, Arnold C B. Bessel and annular beams for materials processing[J]. Laser & Photonics Reviews, 2012, 6(5): 607-621.

[53] Bhuyan M K, Courvoisier F, Lacourt P A, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Applied Physics Letters, 2010, 97(8): 081102.

[54] He F, Yu J J, Tan Y X, et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Scientific Reports, 2017, 7: 40785.

乔玲玲, 储蔚, 王哲, 程亚. 基于整形飞秒激光脉冲的三维微纳制备[J]. 光学学报, 2019, 39(1): 0126012. Lingling Qiao, Wei Chu, Zhe Wang, Ya Cheng. Three-Dimensional Microfabrication by Shaped Femtosecond Laser Pulses[J]. Acta Optica Sinica, 2019, 39(1): 0126012.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!