光通信研究, 2018 (6): 11, 网络出版: 2018-12-26  

奇点光束复用光通信(特邀)

Singular Optical Beams Multiplexing Optical Communication
作者单位
深圳大学 光电工程学院,广东 深圳 518060
摘要
奇点光束包括基于相位奇点的轨道角动量(OAM)光束和基于偏振奇点的柱矢量光束(CVB)。OAM光束和CVB都具有正交性,可以作为空分复用的模式应用于光通信中,为光束复用提供一个新的自由度,大幅度地提高光通信系统的容量,在光通信中具有广泛的应用前景。文章首先介绍了OAM光束和CVB的数学描述和物理特性,然后重点综述了其产生和检测方法以及在自由空间光通信和光纤通信中的研究进展,比较了OAM光束和CVB在光通信应用中各自的优势与不足之处。最后,探讨了奇点光束复用光通信的应用方向和发展趋势。
Abstract
The singular optical beams refer to the Orbital Angular Momentum (OAM) beam with phase singularity and the Cylindrical Vector Beam (CVB) with polarization singularity. Both the OAM and CVB are orthogonal optical modes, which can serve as basis for spatial division multiplexing optical communication. By providing a new degree of freedom, the singular optical beam multiplexing techniques dramatically increase the optical communication capacity and show significant application potentials in both classical and quantum optical communication. In this review paper, we firstly introduce the mathematical descriptions and physics properties of the OAM and CVB beams. Then the methods and techniques for OAM and CVB generation/detection are summarized. We also review the latest progresses of the OAM and CVB multiplexing based optical communication applications including the free-space and optical fiber communication. Finally, we talk about the pros and cons of the singular optical beams, and show our prospective for the future developments of the techniques.
参考文献

[1] Winzer P J. Making Spatial Multiplexing A Reality[J]. Nature Photonics, 2014, 8(5): 345-348.

[2] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital Angular-Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[3] Moh K J,Yuan X C,Bu J,et al.Generating Radial or Azimuthal Polarization by Axial Sampling of Circularly Polarized Vortex Beams[J].Applied Optics,2007,46(30):7544-7551.

[4] HarmW, Bernet S, Ritsch-Marte M, et al. Adjustable Diffractive Spiral Phase Plates[J]. Optics Express, 2015, 23(1): 413-421.

[5] Shen Y, Campbell G T, Hage B, et al. Generation and Interferometric Analysis of High Charge Optical Vortices[J]. Journal of Optics, 2013, 15(4):04005.

[6] Liu J, Wang J. Demonstration of Polarization-Insensitive Spatial Light Modulation Using a Single Polarization-Sensitive Spatial Light Modulator[J]. Scientific Reports, 2015, 5:9959.

[7] Beijersbergen M W, Allen L, Vanderveen H, et al. Astigmatic Laser Mode Converters and Transfer of Orbital Angular-Momentum[J]. Optics Communications, 1993, 96(1-3): 123-132.

[8] Heckenberg N R,McDuff R,Smith C P,et al.Generation of Optical-Phase Singularities by Computer-Generated Holograms[J].Optics Letters,1992,17(3):221-223.

[9] Wei B Y, Hu W, Ming Y, et al. Generating Switchable and Reconfigurable Optical Vortices via Photopatterning of Liquid Crystals[J]. Advanced Materials, 2014, 26(10): 1590-1595.

[10] Xu B J, Wu C, Wei Z Y, et al. Generating an Orbital-Angular-Momentum Beam with a Metasurface of Gradient Reflective Phase[J]. Optical Materials Express, 2016, 6(12): 3940-3945.

[11] Lei T, Zhang M, Li Y R, et al. Massive Individual Orbital Angular Momentum Channels for Multiplexing Enabled by Dammann Gratings[J]. Light-Science & Applications, 2015, 4: 7.

[12] Morizur J F, Jian P, Denolle B, et al. Efficient and Mode-Selective Spatial Multiplexer based on Multi-plane Light Conversion[C]//2015 Optical Fiber Communications Conference and Exhibition.Los Angeles, CA, 2015:15599-15607.

[13] Cai X L, Wang J W, Strain M J, et al. Integrated Compact Optical Vortex Beam Emitters[J]. Science, 2012, 338(6105): 363-366.

[14] Xie Z W, Lei T, Li F, et al. Ultra-Broadband on-Chip Twisted Light Emitter for Optical Communications[J]. Light-Science & Applications, 2018, 7: 6.

[15] Qiao Z, Xie G Q, Wu Y H, et al. Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order[J]. Laser & Photonics Reviews, 2018, 12(8):1800019.

[16] Li H L, Phillips D B, Wang X Y, et al. Orbital Angular Momentum Vertical-Cavity Surface-Emitting Lasers[J]. Optica, 2015, 2(6): 547-552.

[17] Okida M, Omatsu T. Direct Generation of High Power Laguerre-Gaussian Output from a Diode-Pumped Nd:YVO4 1.3 μm Bounce Laser[J]. Optics Express, 2007, 15(12): 7616-7622.

[18] Senatsky Y,Bisson J F,Li J L,et al.Laguerre-Gaussian Modes Selection in Diode-Pumped Solid-State Lasers[J].Optical Review,2012,19(4):201-221.

[19] Miao P, Zhang Z F, Sun J B, et al. Orbital Angular Momentum Microlaser[J]. Science, 2016, 353(6298): 464-467.

[20] Gao C Q, Qi X Q, Liu Y D, et al. Sorting and Detecting Orbital Angular Momentum States by Using a Dove Prism Embedded Mach-Zehnder Interferometer and Amplitude Gratings[J]. Optics Communications, 2011, 284(1): 48-51.

[21] Hickmann J M,Fonseca E J S,Soares W C,et al. Unveiling a Truncated Optical Lattice Associated with a Triangular Aperture Using Light’s Orbital Angular Momentum[J].Physical Review Letters,2010,105(5):053904.

[22] Ghai D P, Senthilkumaran P, Sirohi R S. Single-Slit Diffraction of an Optical Beam with Phase Singularity[J]. Optics and Lasers in Engineering, 2009, 47(1): 123-126.

[23] Zhou H L, Yan S Q, Dong J J, et al. Double Metal Subwavelength Slit Arrays Interference to Measure the Orbital Angular Momentum and the Polarization of Light[J]. Optics Letters, 2014, 39(11): 3173-3176.

[24] Saitoh K, Hasegawa Y, Hirakawa K, et al. Measuring the Orbital Angular Momentum of Electron Vortex Beams Using a Forked Grating[J]. Physical Review Letters, 2013, 111(7): 5.

[25] Li Y J, Deng J, Li J P, et al. Sensitive Orbital Angular Momentum (OAM) Monitoring by Using Gradually Changing-Period Phase Grating in OAM-Multiplexing Optical Communication Systems[J]. IEEE Photonics Journal, 2016, 8(2): 6.

[26] Ren H R, Li X P, Zhang Q M, et al. On-Chip Noninterference Angular Momentum Multiplexing of Broadband Light[J]. Science, 2016, 352(6287): 805-809.

[27] Zhou H L, Fu D Z, Dong J J, et al. Orbital Angular Momentum Complex Spectrum Analyzer for Vortex Light based on the Rotational Doppler Effect[J]. Light-Science & Applications, 2017, 6(4):e16251.

[28] Kozawa Y, Sato S. Generation of a Radially Polarized Laser Beam by Use of a Conical Brewster Prism[J]. Optics Letters, 2005, 30(22): 3063-3065.

[29] Yonezawa K, Kozawa Y, Sato S. Generation of a Radially Polarized Laser Beam by Use of the Bbirefringence of a c-cut Nd : YVO4 Crystal[J]. Optics Letters, 2006, 31(14): 2151-2153.

[30] Han W, Yang Y F, Cheng W,et al. Vectorial Optical Field Generator for the Creation of Arbitrarily Complex Fields[J]. Optics Express, 2013, 21(18): 20692-20706.

[31] Liang Y S, Yan S H, Yao B L, et al. Generation of Cylindrical Vector Beams based on Common-Path Interferometer with a Vortex Phase Plate[J]. Optical Engineering, 2016, 55(4): 6.

[32] Weng X Y, Du L P, Yang A P, et al. Generating Arbitrary Order Cylindrical Vector Beams with Inherent Transform Mechanism[J]. IEEE Photonics Journal, 2017, 9(1): 8.

[33] Zhao C Y, Gan X T, Li P, et al. Design of Multicore Photonic Crystal Fibers to Generate Cylindrical Vector Beams[J]. Journal of Lightwave Technology, 2016, 34(4): 1206-1211.

[34] Moreno I, Davis J A, Ruiz I, et al. Decomposition of Radially and Azimuthally Polarized Beams Using a Circular-Polarization and Vortex-Sensing Diffraction Grating[J]. Optics Express, 2010, 18(7): 7173-7183.

[35] Davis J A,Cottrell D M,Schoonover B C,et al.Vortex Sensing Analysis of Radially and Pseudo-Radially Polarized Beams[J].Optical Engineering,2013,52(5):3.

[36] Xie Z W, Lei T, Weng X Y, et al. A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2799-2802.

[37] Yan Y, Xie G D, Lavery M P J, et al.High-Capacity Millimetre-Wave Communications with Orbital Angular Momentum Multiplexing[J]. Nature Communications, 2014, 5: 9.

[38] Mirhosseini M, Malik M, Shi Z M, et al. Efficient Separation of the Orbital Angular Momentum Eigenstates of Light[J].Nature Communications,2013,4:6.

[39] Su T H, Scott R P, Djordjevic S S, et al. Demonstration of Free Space Coherent Optical Communication Using Integrated Silicon Photonic Orbital Angular Momentum Devices[J]. Optics Express, 2012, 20(9): 7.

[40] Guan B B, Scott R P, Qin C, et al. Free-Space Coherent Optical Communication with Orbital Angular, Momentum Multiplexing/Demultiplexing Using a Hybrid 3D Photonic Integrated Circuit[J]. Optics Express, 2014, 22(1): 145-156.

[41] Xie G D, Zhao Z, Yan Y, et al. Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array[J]. Scientific Reports, 2016, 6: 9.

[42] Brkhout G C G, Lavery M P J, Courtial J, et al. Efficient Sorting of Orbital Angular Momentum States of Light[J]. Physical Review Letters, 2010, 105(15):153601.

[43] Huang H, Milione G, Lavery M P J, et al. Mode Division Multiplexing Using an Orbital Angular Momentum Mode Sorter and MIMO-DSP over a Graded-Index Few-Mode Optical Fibre[J]. Scientific Reports, 2015, 5: 7.

[44] Wan C H, Chen J, Zhan Q W. Compact and High-Resolution Optical Orbital Angular Momentum Sorter[J]. Apl Photonics, 2017, 2(3): 6.

[45] Wen Y H, Chremmos I, Chen Y J, et al. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes[J]. Physical Review Letters, 2018, 120(19): 6.

[46] Ruffato G, Massari M, Parisi G, et al. Test of Mode-Division Multiplexing and Demultiplexing in Free-Space with Diffractive Transformation Optics[J]. Optics Express, 2017, 25(7): 7859-7868.

[47] O’Sullivan M N, Mirhosseini M, Malik M, et al. Near-Perfect Sorting of Orbital Angular Momentum and Angular Position States of Light[J]. Optics Express, 2012, 20(22): 24444-24449.

[48] Mirhosseini M, Malik M, Shi Z, et al. Efficient Separation of the Orbital Angular Momentum Eigenstates of Light[J]. Nature Communications,2013,4:2781.

[49] Fang J C, Xie Z W, Lei T, et al. Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication[J]. ACS Photonics, 2018, 5(9):3478-3484.

[50] Gibson G,Courtial J, Padgett M J, et al.Free-Space Information Transfer Using Light Beams Carrying Orbital Angular Momentum[J].Optics Express,2004,12(22):5448-5456.

[51] Wang J, Yang J Y, Fazal I M, et al. Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

[52] Huang H,Xie G D,Yan Y,et al.100 Tbit/s Free-Space Data Link Enabled by Three-Dimensional Multiplexing of Orbital Angular Momentum,Polarization,and Wavelength[J].Optics Letters,2014,39(2):197-200.

[53] Wang J, Li S H, Luo M, et al. N-Dimentional Multiplexing Link with 1.036-Pbit/s Transmission Capacity and 112.6-bit/s/Hz Spectral Efficiency using OFDM-8QAM Signals over 368 WDM Pol-Muxed 26 OAM Modes[C]// 2014 European Conference on Optical Communication.Cannes,France:IEEE,2014:4768337.

[54] Krenn M,Fickler R,Fink M,et al.Communication with Spatially Modulated Light Through Turbulent Air Across Vienna[J].New Journal of Physics,2014,16:10.

[55] Krenn M, Handsteiner J, Fink M, et al. Twisted Light Transmission over 143 km[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648-13653.

[56] Li L, Zhang R Z, Zhao Z, et al. High-Capacity Free-Space Optical Communications between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-Momentum Beams[J]. Scientific Reports, 2017, 7:17427.

[57] Willner A E, Zhao Z, Ren Y X, et al. Underwater Optical Communications Using Orbital Angular Momentum-based Spatial Division Multiplexing[J]. Optics Communications, 2018, 408: 21-25.

[58] Chandrasekaran N, Shapiro J H. Photon Information Efficient Communication Through Atmospheric Turbulence-Part I: Channel Model and Propagation Statistics[J]. Journal of Lightwave Technology, 2014, 32(6):1075-1087.

[59] Ren Y X,Wang Z,Xie G D,et al.Atmospheric Turbulence Mitigation in an OAM-based MIMO Free-Space Optical Link Using Spatial Diversity Combined with MIMO Equalization[J].Optics Letters,2016,41(11):2406-2409.

[60] Baghdady J, Miller K, Morgan K, et al. Multi-Gigabit/s Underwater Optical Communication Link Using Orbital Angular Momentum Multiplexing[J]. Optics Express, 2016, 24(9): 9794-9805.

[61] Ren Y X, Li L, Wang Z, et al. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications[J]. Scientific Reports, 2016, 6: 10.

[62] Milione G, Nguyen T A, Leach J, et al. Using the Nonseparability of Vector Beams to Encode Information for Optical Communication[J]. Optics Letters, 2015, 40(21): 4887-4890.

[63] Milione G, Lavery M P J, Huang H, et al. 4×20 Gbit/s Mode Division Multiplexing over Free Space Using Vector Modes and a Q-Plate Mode (de)Multiplexer[J]. Optics Letters, 2015, 40(9): 1980-1983.

[64] Zhao Y F, Wang J, High-Base Vector Beam Encoding/Decoding for Visible-Light Communications[J]. Optics Letters, 2015, 40(21): 4843-4846.

[65] Zhu L, Liu J, Mo Q, et al. Encoding/Decoding Using Superpositions of Spatial Modes for Image Transfer in km-Scale Few-Mode Fiber[J]. Optics Express, 2016, 24(15): 16934-16944.

[66] Liu J, Li S M, Zhu L, et al. Direct Fiber Vector Eigenmode Multiplexing Transmission Seeded by Integrated Optical Vortex Emitters[J]. Light-Science & Applications, 2018, 7: 6.

[67] Bozinovic N,Yue Y,Ren Y X,et al.Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers[J].Science,2013,340(6140):1545-1548.

[68] Wong G K L, Kang M S, Lee H W, et al. Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber[J]. Science, 2012, 337(6093): 446-449.

[69] Brunet C, Vaity P, Messaddeq Y, et al. Design, Fabrication and Validation of an OAM Fiber Supporting 36 States[J]. Optics Express, 2014, 22(21): 26117-26127.

[70] Gregg P, Kristensen P, Ramachandran S. Conservation of Orbital Angular Momentum in Air-Core Optical Fibers[J]. Optica, 2015, 2(3): 267-270.

[71] Li S H, Wang J. Multi-Orbital-Angular-Momentum Multi-Ring Fiber for High-Density Space-Division Multiplexing[J]. IEEE Photonics Journal, 2013, 5(5): 7.

[72] Chen C, Zhou G Y, Zhou G, et al. A Multi-Orbital-Angular-Momentum Multi-Ring Micro-Structured Fiber with Ultra-High-Density and Low-Level Crosstalk[J]. Optics Communications, 2016, 368: 27-33.

[73] Qiao W,Lei T,Wu Z,et al.Approach to Multiplexing Fiber Communication with Cylindrical Vector Beams[J].Optics Letters,2017,42(13):2579-2582.

[74] Xie Z W,Gao S C,Lei T,et al.Integrated (de)Multiplexer for Orbital Angular Momentum Fiber Communication[J].Photonics Research,2018,6(7):743-749.

[75] Zhu G X, Hu Z Y, Wu X, et al. Scalable Mode Division Multiplexed Transmission over a 10-km Ring-Core Fiber Using High-Order Orbital Angular Momentum Modes[J]. Optics Express, 2018, 26(2): 594-604.

[76] Zhang J W, Zhu G X, Liu J, et al.Orbital-Angular-Momentum Mode-Group Multiplexed Transmission over a Graded-iIdex Ring-Core Fiber based on Receive Diversity and Maximal Ratio Combining[J]. Optics Express, 2018, 26(4): 4243-4257.

谢友朋, 张珊, 雷霆, 袁小聪. 奇点光束复用光通信(特邀)[J]. 光通信研究, 2018, 44(6): 11. XIE You-peng, ZHANG Shan, LEI Ting, YUAN Xiao-cong. Singular Optical Beams Multiplexing Optical Communication[J]. Study On Optical Communications, 2018, 44(6): 11.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!