光子学报, 2016, 45 (9): 0919001, 网络出版: 2016-10-19  

二维三角格光子晶体等效非线性折射率系数研究

Study of Effective Nonlinear Refractive Index Coefficients of Two-dimensional Triangular-lattice Photonic Crystals
作者单位
湖南大学 信息科学与工程学院,长沙 410082
摘要
考虑光子晶体中场局域效应, 在等效介质理论的基础上利用场平均法得到二维三角格光子晶体的等效折射率.该折射率与平面波展开法得到的结果非常吻合.考虑慢光效应对非线性效应的增强, 引入慢光增强因子得到该光子晶体的等效非线性折射率系数.该光子晶体的等效非线性折射率系数表现出强烈的色散效应, 即随归一化频率的增加而逐渐减小, 达到最小值后迅速递增, 体现了场局域效应和慢光效应对光子晶体中非线性效应的共同作用.本文研究对利用人工微结构调控光学非线性效应具有一定参考价值.
Abstract
Under the condition that the local-field effects in photonic crystals have been considered, a field average method based on the effective medium theory was used to calculate the effective linear refractive index of a two-dimensional triangle-lattice photonic crystal in the first band. The calculated refractive index agrees well with that obtained directly by using the plane-wave expansion method. Furthermore, a slow-light enhancement factor was introduced to calculate the effective nonlinear refractive index coefficients. The calculated nonlinear coefficients of the photonic crystal is strongly dispersive: the nonlinear coefficient decreases slowly to the minimum and then goes up quickly. The frequency-dependent nonlinear coefficients directly demonstrate that the local-field effect and slow light effect influence the nonlinear effects in the photonic crystals simultaneously. The results may be helpful for tuning the nonlinear effects by using man-made microstructures.
参考文献

[1] BOYD R W. Nonlinear optics[M]. 3rd ed. Boston: Academic, 2008.

[2] KAURANEN M, ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.

[3] SLUSHER R E, EGGLETON B J. Nonlinear photonic crystals[M]. Berlin: Springer, 2003.

[4] SOLJACIC M, JOANNOPOULOS J D. Enhancement of nonlinear effects using photonic crystals[J]. Nature Materials, 2004, 3(4): 211.

[5] BUSCH K, FREYMANN G V, LINDEN S, et al. Periodic nanostructures for photonics[J]. Physics Reports, 2007, 444(3): 101-202.

[6] MONAT C, STERKE M D, EGGLETON B J. Slow light enhanced nonlinear optics in periodic structures[J]. Journal of Optics, 2010, 12(10): 104003.

[7] DENZ C, FLACH S, KIVSHAR Y S. Nonlinearities in periodic structures and metamaterials[M]. Berlin: Springer, 2010.

[8] CAI W, SHALAEV V. Optical metamaterials[M]. New York: Springer, 2010.

[9] RICARD D, ROUSSIGNOL P, FLYTZANIS C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513.

[10] 邱俊才, 刘汉奎, 田小兴, 等.光子晶体光纤非线性系数的数值计算[J]. 光子学报, 2008, 37(2): 297-300.

    QIU Jun-cai, LIU Han-kui, TIAN Xiao-xin, et al. Numerical calculations of nonlinear coefficient of photonic crystal fibers[J]. Acta Photonica Sinica, 2008, 37(2): 297-300.

[11] FISCHER G L, BOYD R W, GEHR R J, et al. Enhanced nonlinear optical response of composite materials[J]. Physical Review Letters, 1995, 74(10): 1871-1874.

[12] LEE H, YU K W. Effective medium theory for strongly nonlinear composites: comparison with numerical simulations[J]. Journal of Physics: Condensed Matter, 1995, 197(4): 341-344.

[13] ZHANG C, WU X, WU S, et al. Nonlinear susceptibility of periodic composites with shell structure[J]. Physical Review B, 1996, 54(23): 16349-16352.

[14] METZGER B, HENTSCHE M, SCHUMACHER T, et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas[J]. Nano Letters, 2014, 14(5): 2867-2872.

[15] AOUANI H, RAHMANI M, NAVARRO-CIA M, et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna[J]. Nature Nanotechnology. 2014, 9(4): 290-294.

[16] LI K, LI X, LEI D, et al. Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires[J]. Applied Physics Letters, 2014, 104(26): 261105.

[17] LEE J, TYMCHENKO M, ARGYROPOULOS C, et al. Giant nonlinear response from plasmonicmetasurfaces coupled to intersubband transitions[J]. Nature, 2014, 511(7507): 65-69.

[18] DOLGALEVA K, BOYD R W. Local-field effects in nanostructured photonic materials[J]. Advances in Optics and Photonics, 2012, 4(1): 1-77.

[19] XIA F, SEKARIC L, VLASOV Y. Ultracompact optical buffers on a silicon chip[J]. Nature Photonics, 2007, 1(1): 65-71.

[20] KHURGIN J B. Slow light in various media: A tutorial[J]. Advances in Optics and Photonics, 2010, 2(3): 287-318.

[21] MILONNI P W. Fast light, slow light and left-handed light[M]. Florida: CRC Press, 2004.

[22] KHURGIN J B, TAYLOR R S. Slow light: Science and applications[M]. Florida: CRC press, 2009.

[23] 陈慰宗, 卜涛, 付灵利, 等.一维光子晶体的有效折射率及色散特性[J]. 光子学报, 2002, 31(9): 1124-1127.

    CHEN Wei-zong, BO Tao, FU Ling-li,et al. Effective refractive index and dispersive properties of one-dimensional photonic crystals[J]. Acta Photonica Sinica, 2002, 31(9): 1124-1127.

[24] 刘洋, 唐吉玉, 王茜, 等.Ge基二维正方晶格光干晶体带隙优化设计[J].发光学报, 2014, 35(4): 491-495.

    LIU Yang, TANG Ji-yu, WANG Xi, et al. Optimal design of photonic band gap in Ge-based tetragonal lattice 2D photonic crystal[J]. Chinese Journal of Luminescence, 2014, 35(4): 491-495.

[25] TANG Z, YI W, PAN J, et al. Physical mechanisms for tuning the nonlinear effects in photonic crystals[J]. Optics Express, 2015, 23(15): 19885-19890.

[26] 李春雷,盛秋琴.光子晶体光纤非线性系数与其结构参量及光波长的关系[J]. 光子学报, 2006, 35(5): 734-737.

    LI Chun-lei, SHENG Qiu-qin. The relation between the nonlinear coefficient of PCF and its geometry parameters and the optical wavelength[J]. Acta Photonica Sinica, 2006, 35(5): 734-737.

周科涛, 唐志祥, 易为, 潘蓉, 潘进, 周政. 二维三角格光子晶体等效非线性折射率系数研究[J]. 光子学报, 2016, 45(9): 0919001. ZHOU Ke-tao, TANG Zhi-xiang, YI Wei, PAN Rong, PAN Jin, ZHOU Zheng. Study of Effective Nonlinear Refractive Index Coefficients of Two-dimensional Triangular-lattice Photonic Crystals[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0919001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!