应用激光, 2019, 39 (1): 9, 网络出版: 2019-04-16   

增材制造钛合金激光喷丸强化表面完整性影响实验研究

Effect of Laser Peening on Surface Integrity of Additive Manufactured Titanium Alloy
作者单位
1 上海交通大学机械与动力工程学院, 机械系统与振动国家重点实验室, 上海 200240
2 中国航空工业集团公司沈阳飞机设计研究所, 辽宁 沈阳 110035
摘要
增材制造具有产品开发快速性, 能够直接生产出具有复杂几何形状的金属零件, 同时显著提高材料的利用率、降低成本。增材制造零件在疲劳等关键性能上与锻件仍然存在一定的差距, 需要探寻有效的后处理方法。采用激光喷丸强化增材制造TC4钛合金, 研究增材制造TC4钛合金表面完整性改善效果, 并与同牌号常规锻造钛合金进行强化效果对比。结果表明, 激光喷丸对于两种材料表面粗糙度影响微弱。在硬度方面, 增材制造TC4的表面显微硬度从348 HV增加到367 HV, 影响层深度达0.75 mm, 而常规锻造TC4表面显微硬度从315 HV提高到362 HV, 影响层深度大于1 mm; 在残余应力方面, 激光喷丸在增材制造TC4表面所引入的残余压应力最大值约为400 MPa, 受影响的区域深度约为0.75 mm, 而常规锻造TC4表面所引入的残余压应力最大值约为600 MPa, 受影响区域深度大于1 mm。此外, 利用阿基米德法测量出增材制造TC4的致密度为98.46%, 经过一次激光喷丸处理后提高到98.92%。与锻造TC4相比, 增材制造TC4组织相对疏松, 可能是导致激光喷丸所引入残余应力幅值较小, 影响层深度较浅的原因。
Abstract
Additive manufacturing can rapidly and directly produce metal parts with complex geometries, while significantly improving material utilization and reducing costs. Additive manufacturing parts still have a certain gap with forgings in key properties such as fatigue, and it is necessary to find an effective post-processing method. Additive manufactured TC4 was treated by laser peening, and the surface integrity improvement effect of TC4 titanium alloy was investigated. The strengthening effect was compared with the same grade conventional forged titanium alloy. The results show that laser peening has little effect on the surface roughness of the two materials. Furthermore, the surface microhardness of additive manufactured TC4 increased from 348 HV to 367 HV, and the hardening layer reached a thickness of 0.75 mm, while the surface microhardness of wrought TC4 increased from 315 HV to 362 HV, and the hardening layer reached a thickness more than 1 mm. Compressive residual stress was induced into the subsurface of the samples with a maximum value around 400 MPa for the additive manufactured TC4. The affected zone depth was around 0.75 mm. For the wrought TC4, the compressive residual stress was induced into the subsurface of the samples with a maximum value around 600 MPa. The affected zone depth was more than 1 mm. In addition, the density of additive manufactured TC4 was measured by the Archimedes method. The density of additive manufactured TC4 was 98.46%, while the density became 98.92% after one shock of laser peening. Compared with wrought TC4, the relative porosity of additive manufactured TC4 may be the reason for the smaller residual stress amplitude and shallow affected depth by laser peening.
参考文献

[1] 曾亮华, 刘继常.金属3D打印技术的发展分析[J].机械工程师, 2016(3): 42-44.

    ZENG L H, LIU J C.Development analysis of metal 3D printing technology[J].Mechanical Engineer, 2016(3): 42-44.

[2] DEBROY T, WEI H L, ZUBACK J S, et al.Additive manufacturing of metallic components-process, structure and properties[J].Progress in Materials Science, 2018(92): 112-224.

[3] 李涤尘, 苏秦, 卢秉恒.增材制造——创新与创业的利器[J].航空制造技术, 2015(10): 38-43.

    LI D C, SU Q, LU B H.Additive manufacturing-tool for innovation and entrepreneurship[J].Aeronautical Manufacturing Technology, 2015(10): 38-43.

[4] 张霜银. 激光快速成形TC4钛合金的组织和力学性能研究[D]. 西安: 西北工业大学 2006.

    ZHANG S Y.Research on micorstructures and properties of Ti-6Al-4V titanium alloy in laser rapid forming processing[D].Xi'an: Northwestern Polytechnical University 2006.

[5] 刘奋成, 贺立华, 林鑫, 等.电弧沉积制造TC4钛合金的组织和力学性能研究[J].热加工工艺, 2014(10): 1-5.

    LIU F C, HE L H, LIN X, et al.Study on Microstructure and Mechanical Properties of Arc Deposition Manufactured TC4 Titanium Alloy[J].Hot Working Technology, 2014(10): 1-5.

[6] 赵剑峰, 马智勇, 谢德巧, 等.金属增材制造技术[J].南京航空航天大学学报, 2014, 46 (5): 675-683.

    ZHAO J F, MA Z Y, XIE D Q, et al.Metal additive manufacturing technique[J].Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 675-683.

[7] BOYER R R.An overview on the use of titanium in the aerospace industry[J].Materials Science & Engineering A, 1996, 213 (1-2): 103-114.

[8] 郝晓宁.激光增材制造毛坯与传统锻件铸件差异性分析[J].航空制造技术, 2017(5): 82-86.

    HAO X N.Difference analysis between laser additive manufacturing and conventional forging and casting[J].Aeronautical Manufacturing Technology, 2017(5): 82-86.

[9] MURR L E, QUINONES S A, GAYTAN S M, et al.Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications[J].Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(1): 20-32.

[10] GNTHER J, KREWERTH D, LIPPMANN T, et al.Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J].International Journal of Fatigue, 2017(94): 236-245.

[11] 陆莹, 赵吉宾, 乔红超.TiAl合金激光冲击强化工艺探索及强化机制研究[J].中国激光, 2014, 41(10): 119-124.

    LU Y, ZHAO J B, QIAO H C.Investigation of technical and strengthening mechanism research of TiAl alloy by laser shock peening[J].Chinese Journal of Lasers, 2014, 41(10): 119-124.

[12] ZABEEN S, PREUSS M, WITHERS P J.Residual stresses caused by head-on and 45°foreign object damage for a laser shock peened Ti-6Al-4V alloy aerofoil[J].Materials Science & Engineering A, 2013(560): 518-527.

[13] 李东霖, 何卫锋, 游熙, 等.激光冲击强化提高外物打伤TC4钛合金疲劳强度的试验研究[J].中国激光, 2016, 43(7): 116-124.

    LI D L, HE W F, YOU X, et al.Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J].Chinese Journal of Lasers, 2016, 43 (7): 116-124.

[14] KALENTICS N, BOILLAT E, PEYRE P, et al.3D laser shock peening-a new method for the 3D control of residual stresses in selective laser melting[J].Materials & Design, 2017(130): 350-356.

[15] SPIERINGS A B, SCHNEIDER M, EGGENBERGER R.Comparison of density measurement techniques for additive manufactured metallic parts[J].Rapid Prototyping Journal, 2011, 17(5): 380-386.

[16] 胡正云.TB6钛合金喷丸强化工艺研究[D].南京: 南京航空航天大学, 2013.

    HU Z Y.Research on shot peening technology of TB6 titanium alloy[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.

[17] 槐艳艳, 赵吉宾, 乔红超, 等.薄壁钛合金Ti17激光冲击强化表面完整性研究[J].组合机床与自动化加工技术, 2017(12): 73-77.

    HUAI Y Y, ZHAO J B, QIAO H C et al.Investigation of laser shock peening on the surface integrity of Ti17 thin-walled titanium alloy[J].Modular Machine Tool & Automatic Manufacturing Technique, 2017(12): 73-77.

[18] 杨光, 王斌, 钦兰云, 等.激光和电弧增材制造TC4钛合金组织和性能研究[J].稀有金属, 2017: 1-6.

    YANG G, WANG B, QIN L Y, et al.Study on microstructure and properties of laser deposition additive manufacturing and wire and arc additive manufacturing TC4 titanium alloy[J].Chinese Journal of Rare Metals, 2017: 1-6.

[19] 杨光, 王文东, 钦兰云, 等. α+β区退火对激光沉积TA15钛合金组织及硬度的影响[J]. 金属热处理, 2017(12): 39-43.

    YANG G, WANG W D, QIN L Y, et al.Effect of α + β phase zone annealing on microstructure and microhardness of laser deposition manufactured TA15 titanium alloy [J].Heat Treatment of Metals, 2017(12): 39-43.

[20] 文艺.3D打印两相钛合金组织特征及缺陷研究[D].南昌: 南昌航空大学, 2016.

    WEN Y.Research on microstructure and defects of two-phase titanium alloy with 3D printing[D].Nanchang: Nanchang Hangkong University, 2016.

[21] WANG M, LIN X, HUANG W.Laser additive manufacture of titanium alloys[J].Materials & Processing Report, 2015, 31(2): 90-97.

[22] 万志鹏, 王宠, 蒋文涛, 等.孔洞缺陷对3D打印Ti-6Al-4V合金疲劳试样应力分布的影响[J].实验力学, 2017(1): 1-8.

    WAN Z P, WANG C, JIANG W T, et al.On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing[J].Journal of Experimental Mechanics, 2017(1): 1-8.

[23] 张凤英, 陈静, 谭华, 等.钛合金激光快速成形过程中缺陷形成机理研究[J].稀有金属材料与工程, 2007(2): 211-215.

    ZHANG F Y, CHEN J, TAN H, et al.Research on forming mechanism of defects in laser rapid formed titanium alloy[J].Rare Metal Materials and Engineering, 2007(2): 211-215.

[24] 景祥.激光冲击强化对奥氏体不锈钢熔覆层/焊接区机械性能和组织的影响及缺陷检测[D].镇江: 江苏大学, 2016.

    JING X.Effects of laser shock peening on mechanical properties, microstructure in austenitic stainless steel cladding coating/welding zone and defect detection[D].Zhenjiang: Jiangsu University, 2016.

赖梦琪, 胡宗浩, 胡永祥, 姚振强. 增材制造钛合金激光喷丸强化表面完整性影响实验研究[J]. 应用激光, 2019, 39(1): 9. Lai Mengqi, Hu Zonghao, Hu Yongxiang, Yao Zhenqiang. Effect of Laser Peening on Surface Integrity of Additive Manufactured Titanium Alloy[J]. APPLIED LASER, 2019, 39(1): 9.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!