中国光学, 2014, 7 (1): 98, 网络出版: 2014-02-26   

液晶自适应光学视网膜校正成像技术研究

Retinal correction imaging system based on liquid crystal adaptive optics
作者单位
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中国科学院 苏州生物医学工程技术研究所 江苏省医用光学重点研究室,江苏 苏州 215163
摘要
为了实现对人眼视网膜的高分辨率成像,解决偏振能量损失、成像视场小和普适性差等问题,对液晶自适应光学技术及其在人眼视网膜成像中的应用进行了研究。通过开环光路的设计方案,避免了闭环液晶自适应系统的偏振光能量损失; 在光路中加入可变视场光阑,利用小视场照明进行波前探测、大视场照明进行像差校正和成像的方法扩大了成像视场; 使用脉冲光照明的方案减小曝光量; 通过偏振光照明提高能量利用率、等效无穷远视标配合补偿镜以及改进后的视标提高盯视稳定性等一系列方法,提高系统普适性。校正后成像的清晰度和对比度获得了明显提高; 高分辨率眼底成像视场直径从200 μm扩大到500 μm; 曝光量减小到原来的1/2~1/3; 对前期难以获得清晰成像的样本,取得了效果良好的视网膜视觉细胞自适应图像。
Abstract
In order to realize high resolution retinal imaging, the technique of Liquid Crystal Adaptive Optics(LC-AO) and its utilize in retinal imaging is under investigation. Problems are settled in the research such as energy loss by polarization, limitation on field of view(FOV) and universality of LC-AO system in retinal imaging. Open-loop adaptive optics system is introduced to avoid the energy loss by polarization in closed-loop system. View field of imaging system is expanded by adhibition of an alterable diaphragm. Exposure ratio is reduced by a pulsed light source. Illumination is polarized to increase energy efficiency. Trial lens and dynamic, advanced target at infinite are used to increase the stability of pupil and reduce the impact of individual differences on human-eyes. Definition and contrast of images after correction are remarkably increased. FOV is enhanced from 200 μm to 500 μm. Exposure ratio is reduced to 1/2~1/3. High definition images are taken from samples with low resolution before. Most problems of LC-AO system for high resolution retinal imaging are settled.
参考文献

[1] WIGGINS R L,VAUGHAN K D,FRIEDMANN G B. Holography using a fundus camera[J]. Appl. Opt.,1972,11(1): 179-181.

[2] 王肇圻,许妍.基于眼模型的数字眼底相机设计[J].光学 精密工程,2008,16(9): 1567-1571.

    WANG ZH Q,XU Y. Design of digital retina camera based on eye model[J]. Opt. Precision Eng.,2008,16(9): 1567-1571.(in Chinese)

[3] WEBB R H,HUGES G W,DELORI F C. Confocal scanning laser ophthalmoscope[J]. Appl. Opt.,1987,26(8): 1492-1499.

[4] NASSIF N A,CENSE B,PARK B H,et al.. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve[J]. Opt. Express.,2004,12(3): 367-376.

[5] LEITGEB R,HITZENBERGER C,FERCHER A. Performance of fourier domain vs. time domain optical coherence tomography[J]. Opt. Express.,2003,11(8): 889-894.

[6] HOFER H,ARTAL P,SINGER B,et al.. Dynamics of the eye's wave aberration[J]. J. Opt. Soc. Am. A,2001,18(3): 497-506.

[7] SMIRNOV M S. Measurement of the wave aberrations of the eye[J]. Biophysics(USSR),1961,6: 776-795.

[8] 曹召良,李小平,宣丽,等.液晶自适应光学的研究进展[J].中国光学,2012,5(1): 12-19.

    CAO ZH L,LI X P,XUAN L,et al.. Recent progress in liquid crystal adaptive optical techniques[J]. Chinese Optics,2012,5(1): 12-19.(in Chinese)

[9] 林旭东,薛陈,刘欣悦,等.自适应光学波前校正器技术发展现状[J].中国光学,2012,(4): 337-351.

    LIN X D,XUE CH,LIU X Y,et al.. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics,2012,(4): 337-351.(in Chinese)

[10] DALIMIER E,DAINTY C. Comparative analysis of deformable mirrors for ocular adaptive optics[J]. Optics Express,2005,13(11): 4275-4285.

[11] LOVE G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Appl. Opt.,1997,36(7): 1517-1520.

[12] VARGAS-MART N F,PRIETO P M,ARTAL P. Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance[J]. J. Opt. Soc. Am. A.,1998,15(9): 2552-2562.

[13] FERN NDEZ E J,IGLESIAS I,ARTAL P. Closed-loop adaptive optics in the human eye[J]. Opt. Lett.,2001,26: 746-748.

[14] WILLIAMS D R. Adaptive optics for the human eye[J]. Frontiers in Optics,OSA Technical Digest(CD),2003: MM1.

[15] QUAN W,WANG ZH Q,MU G G,et al.. Correction of the aberrations in the human eyes with SVAG1 thin-film transistor liquid-crystal display[J]. Optik.-Int. J. Light Electron. Opt.,2003,114(10): 467-471.

[16] KITAGUCHI Y,BESSHO K,YAMAGUCHI T,et al.. In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera[J]. Jpn. J. Ophthalmol.,2007,51(6): 456-461.

[17] LOVE G D. Liquid-crystal phase modulator for unpolarized light[J]. Appl. Opt.,1993,32(13): 2222-2223.

[18] LOVE G D,MAJOR J V,PURVIS A. Liquid-crystal prisms for tip-tilt adaptive optics[J]. Opt. Lett.,1994,19(15): 1170-1172.

[19] RIPPS H,WEALE R A. Flash bleaching of rhodopsin in the human retinal[J]. J Physiol.,1969,200(1): 151-159.

[20] 齐岳,孔宁宁,李大禹,等.高分辨率开环液晶自适应光学视网膜成像系统[J].光学学报,2012,32(10): 1011003.

    QI Y,KONG N N,LI D Y,et al.. High resolution open-loop adaptive optics system for retinal imaging based on liquid crystal spatial light modulator[J]. Acta Optica Sinica,2012,32(10): 1011003.(in Chinese)

[21] 李零印,王一凡,王骥.靶场光学测量中的变焦距光学系统[J].中国光学,2011,4(3): 240-246.

    LI L Y,WANG Y F,WANG J. Varifocal optical system to optical measurement of shooting range[J]. Chinese Optics,2011,4(3): 240-246.(in Chinese)

[22] 徐亮,赵建科,周艳,等.长焦距、大视场空间观测相机光学系统设计[J].光学与光电技术,2010,8(6): 64-66.

    XU L,ZHAO J K,ZHOU Y,et al.. Optical design of the space observation camera with long focal length and wide field of view[J]. Opt. Optoelectronic Technology,2010,8(6): 64-66.(in Chinese)

[23] 杨振刚,陈海清.红外光学系统焦距测量的研究[J].光学与光电技术,2011,9(6): 33-35.

    YANG ZH G,CHEN H Q. Infrared optic systems focus measurement[J]. Opt. Optoelectronic Technology,2011,9(6): 33-35.(in Chinese)

[24] BUENO J M. Depolarization effects in the human eye[J]. Vision Research,2001,41(21): 2687-2696.

[25] 程少园,胡立发,曹召良,等.人眼视网膜成像自适应光学系统的初步试验和改进[J].光子学报,2009,38(6):1491-1493.

    CHENG SH Y,HU L F,CAO ZH L,et al.. Primary experiment and improvement design of adaptive optics system for human retinal imaging[J]. Acta Optica Sinica,2009,38(6): 1491-1493.(in Chinese)

[26] MU Q Q,CAO ZH L,LI D Y,et al.. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in model eye[J]. Opt. Express,2007,15: 1946-1953.

[27] KELLY T,MUNCH J. Wavelength dependence of twisted nematic liquid crystal phase modulators[J]. Opt. Commun.,1998,156: 252-258.

[28] KONG N N,LI CH,XIA M L,et al.. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system[J]. J. Biomed. Opt.,2012,17(2): 10774-10781.

[29] HOCHHEIMER B F,KUES H A. Retinal polarization effects[J]. Appl. Opt.,1982,21(21): 3811-3818.

郑贤良, 刘瑞雪, 夏明亮, 曹召良, 宣丽. 液晶自适应光学视网膜校正成像技术研究[J]. 中国光学, 2014, 7(1): 98. ZHENG Xian-liang, LIU Rui-xue, XIA Ming-liang, CAO Zhao-liang, XUAN Li. Retinal correction imaging system based on liquid crystal adaptive optics[J]. Chinese Optics, 2014, 7(1): 98.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!