作者单位
摘要
宁波大学 高等技术研究院红外材料与器件实验室,宁波 315211
利用射频磁控溅射法制备了掺铒Ga2O3薄膜,研究了不同氧化铒靶溅射功率和不同退火温度下薄膜的发光特性,发现在氧化铒靶溅射功率为40 W以及退火温度达到600 ℃时薄膜显示出良好的光致发光强度。为了有效避免直接蚀刻掺铒薄膜层导致的表面粗糙等问题,设计了沟道型以及脊型掺铒Ga2O3薄膜波导结构,并使用紫外光刻和等离子蚀刻技术制备相应的平面波导,使用截断法测得4 μm宽的掺铒Ga2O3波导在1 310 nm处的光学损耗最小为1.26 dB/cm。实验结果表明掺铒Ga2O3波导作为片上光学放大器件具有良好的应用前景。
光学特性 掺铒波导 射频磁控溅射 Ga2O3 干法刻蚀 Optical properties Erbium-doped waveguide RF-magnetron sputtering Ga2O3 Dry etching 
光子学报
2023, 52(8): 0823003
作者单位
摘要
宁波大学高等技术研究院, 红外材料与器件实验室, 浙江 宁波 315211
使用磁控溅射制备了掺铒氧化铝薄膜, 对薄膜进行了退火处理, 测量薄膜的折射率和X射线衍射图谱, 发现薄膜在600 ℃的退火温度下呈非晶态, 在1.5 μm处的折射率为1.67左右。模拟模场分布, 获得光与掺铒层之间相互作用最大的波导结构参数, 并进一步优化制备条件, 实现侧壁光滑的低损耗掺铒氧化铝脊型波导。在1.31 μm的波长下, 2 μm宽度的氧化铝脊型波导的损耗为1.6 dB/cm, 和使用超快激光灼烧的方法所制备出的损耗为3.8 dB/cm氧化铝脊型波导相比, 损耗大为降低。结果表明, 掺铒氧化铝波导在平面集成波导放大器应用方面极具潜力。
氧化铝薄膜 射频溅射 紫外光刻 脊型波导 干法刻蚀 Al2O3 film RF sputtering ultraviolet lithography ridge waveguide dry etching 
应用激光
2023, 43(2): 127
作者单位
摘要
1 黑龙江大学物理科学与技术学院, 黑龙江 哈尔滨 150080
2 山东省立医院皮肤科, 山东 济南 250021
3 视网膜健康中心科研部, 迈尔斯堡 33907
总结了增材制造技术在个性化眼科医疗、精准眼科医疗、移动眼科医疗、眼视光学和眼科仿生领域的近期应用与未来发展前景。激光增材制造技术凭借易于定制和高效率的优势,有望令病人获得更具人性化、更有针对性、更加普及化的眼科医疗服务。
激光技术 激光增材制造 三维打印 眼科 应用前景 
激光与光电子学进展
2018, 55(1): 011406
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,应用光学国家重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163
自适应光学眼底相机,由于较高的成像分辨率和人眼等晕角的存在,单次成像的视场被限制在1°左右。必须实现单个视场的精确定位和多个视场的图像拼接,才能得到完整的眼底图像。为了精确定位,文中分析视标引导成像视场的原理,设计了新型的视标引导系统。平行光照明视标,并通过透镜聚焦于人眼瞳孔中心,这样能够精确测量眼底成像视场的位置。基于此搭建的自适应光学系统可在22.6°的眼底范围内成像,精度达到0.003°。这套系统成功实现了单个细胞的追踪和眼底血管的大视场拼接,这将有益于液晶自适应光学系统在临床眼科的应用和推广。
液晶自适应光学 视标引导 视网膜成像 liquid crystal adaptive optics visual target guidance retinal imaging 
红外与激光工程
2015, 44(6): 1794
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 中国科学院苏州生物医学工程技术研究所江苏省医用光学重点研究室, 江苏 苏州 215163
为提高自适应光学人眼波像差校正和视网膜成像效果,研究了人眼动态波像差的特性。利用采样频率为300 Hz、曝光时间为3 ms的哈特曼传感器,搭建波像差探测系统。误差分析和模拟人眼实验表明,该系统对动态波像差的测量误差均方根(RMS)均值仅为0.01λ。人眼波像差探测结果表明,人眼存在150 Hz以上的波像差,可能对自适应波像差校正造成影响。这种影响可通过延长探测和成像曝光时间的方法来抑制。为了达到衍射极限,对于稳定盯视状态下的人眼,3 ms探测曝光、探测校正周期不超过45 ms的自适应系统,其校正残差均方根在λ/14以下;当曝光时间增加到6 ms时,该周期可放宽至62 ms。研究了倾斜像差的波动对成像的影响,确定了高分辨率人眼眼底成像中,成像曝光时间最长不能超过9 ms。上述结果表明,将自适应光学视网膜成像的探测曝光与成像曝光时间均定在6 ms左右,可获得更好的校正和成像效果。
视觉光学 Shack-Hartmann波前传感器 人眼像差 高频探测 自适应光学 
光学学报
2014, 34(7): 0733001
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中国科学院 苏州生物医学工程技术研究所 江苏省医用光学重点研究室,江苏 苏州 215163
为了实现对人眼视网膜的高分辨率成像,解决偏振能量损失、成像视场小和普适性差等问题,对液晶自适应光学技术及其在人眼视网膜成像中的应用进行了研究。通过开环光路的设计方案,避免了闭环液晶自适应系统的偏振光能量损失; 在光路中加入可变视场光阑,利用小视场照明进行波前探测、大视场照明进行像差校正和成像的方法扩大了成像视场; 使用脉冲光照明的方案减小曝光量; 通过偏振光照明提高能量利用率、等效无穷远视标配合补偿镜以及改进后的视标提高盯视稳定性等一系列方法,提高系统普适性。校正后成像的清晰度和对比度获得了明显提高; 高分辨率眼底成像视场直径从200 μm扩大到500 μm; 曝光量减小到原来的1/2~1/3; 对前期难以获得清晰成像的样本,取得了效果良好的视网膜视觉细胞自适应图像。
自适应光学 液晶波前校正器 视网膜成像 开环 大视场 adaptive optics liquid crystal wavefront corrector retinal imaging open-loop large field observation 
中国光学
2014, 7(1): 98

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!