中国激光, 2015, 42 (4): 0408001, 网络出版: 2015-03-25   

Na2高位振动态与CO2分子间碰撞能量转移的研究

Study of Collisional Energy Transfer between Highly Vibrationally Excited Na2 and CO2
作者单位
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
摘要
摘要利用受激发射抽运将Na2分子激发到Na2 X 1 Σ +g (33,11)高位振动态,研究了高激发Na2与CO2的态-态能量转移过程。窄线宽激光扫描Na2的X 1 Σ +g (33,11)→ A1 Σ +u (21,10)跃迁,测量它的透射光强,从吸收系数得到Na2 X 1 Σ +g (33,11)原生态布居数密度。利用高分辨率瞬时吸收测量技术,得到CO2基振动态(0000)上转动态的布居数密度。通过速率方程分析,在一次碰撞的条件下,得到了与高振动激发Na2 碰撞产生CO2(0000)高转动态的速率系数。对于J=46~64,速率系数在4.5×10-12~6.5×10-13 cm3s-1之间,相对于J 态的Na2 ( ν″ =33)的猝灭速率系数在2.3×10-11~9.1×10-11 cm3s-1之间。实验数据表明,在Na2 高位振动态与CO2 的碰撞能量转移中,Na2 激发态倒空对CO2 转动能量的增加更有效。观察到了Na2高位振动态的多量子弛豫,得到了弛豫速率系数。
Abstract
Using stimulated emission pumping, the Na2 molecule is excited to Na2 X 1 Σ + g ( ν″ =33, J″ =11) high vibrational state, and the state- state energy transfer processes of the highly excited Na2 and CO2 are studied. Scanning Na2 X 1 Σ +g (33, 11)→ A1 Σ +u (21, 10) transition by narrow linewidth laser and monitoring its transmission light intensity, the original population density of Na2 [ X 1 Σ +g (33, 11)] is measured from absorption coefficient. Using highresolution transient absorption measurement technique, the distribution of CO2 rotational population in the ground (0000) state is determined. Through the analysis of rate equation, under the single- collision condition, the rate constants of CO2 (0000) high rotational state in the collisions with highly vibrationally excited Na2 are obtained. For J=46~64, the rate constants have been measured in 4.5×10-12~6.5×10-13 cm3s-1. Relatively to the J state, the quenching rate constants of Na2 ( ν″ =33) have been determined in 2.3×10-11~9.1×10-11 cm3s-1. The experimental data show that in the collisional energy transfer between highly vibrationally excited Na2 and CO2, the increase of CO2 rotational energy is much more sensitive to collisional depletion of excited state Na2. Multiquantum relaxation of highly vibrationally excited Na2 is observed and the relaxation rate constants have been obtained.
参考文献

[1] R T Jongma, A M Wodtke. Fast multiquantum vibrational relaxation of highly vibrationally excited O2[J]. Journal of Chemical Physics, 1999, 111(24): 10957-10963.

[2] H Park, T G Slanger. O2(X, ν =8~22) 300 K quenching rate coefficients for O2 and N2, and O2(X) vibrational distribution from 248nm O3 photodissociation[J]. Journal of Chemical Physics, 1994, 100(1): 287-300.

[3] L Yuan, J Du, A S Mullin. Energy-dependent dynamics of large-ΔE collisions: Highly vibrationally excited azulene (E=20390 and 38580 cm-1) with CO2[J]. Journal of Chemical Physics, 2008, 129(1): 014303.

[4] Juhong Han, You Wang, He Cai, et al.. Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode [J]. Chinese Optics Letters, 2014, 12(s2): S20201.

[5] A J McCaffery, M Pritchard, R J Marsh, et al.. Quantum state-resolved energy redistribution in gas ensembles containing highly excited N2[J]. Journal of Chemical Physics, 2011, 134(4): 044317.

[6] Zhiming Tao, Yanfei Wang, Shengnan Zhang, et al.. Atomic population distribution of excited states in He electrodeless discharge lamp[J]. Chinese Optics Letters, 2013, 11(10): 100202.

[7] S Y Wang, B Zhang, D H Zhu, et al.. Energy-dependence of vibrational relaxation between highly vibrationally excited KH (X1Σ +,ν″=14~23) and H2, and N2[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 96: 517-525.

[8] X H Cui, B X Mu, Y F Shen, et al.. Vibrational relaxation and vibration- rotation energy transfer between highly vibrationally excited KH(X1Σ+, n=14~21) and CO2[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(16): 2081-2087.

[9] M C Wall, B A Stewart, A S Mullin. State-resolved collisional relaxation of highly vibrationally excited pyridine by CO2: Influence of a permanent dipole moment[J]. Journal of Chemical Physics, 1998, 108(15): 6185-6196.

[10] W G Lawrence, T A Van Marter, M L Nowlin, et al.. Inelastic collision dynamics of vibrationally excited I2(X) [J]. Journal of Chemical Physics, 1997, 106(1): 127-141.

[11] G V Hartland, D Qin, H L Dai. Observation of large vibration-to-vibration energy transfer collisions (ΔE≥3500 cm-1) in quenching of highly excited NO2 by CO2 and N2O[J]. Journal of Chemical Physics, 1994, 101(10): 8554-8563.

[12] S Watanabe, H Fujii, H Kohguchi, et al.. Kinetic study of vbrational energy transfer from a wide range of vibrational levels of O2 (X3Σg-, n=6~12) to CF4[J]. Journal of Physical Chemitry A, 2008, 112(39): 9290-9295.

[13] K Yamasaki, H Fujii, S Watanabe, et al.. Efficient vibrational relaxation of O2(X3Σg- , n=8) by collisions with CF4[J]. Physical Chemistry Chemical Physics, 2006, 8(16): 1936-1941.

[14] A Lucchesini, S Gozzini. Diode laser overtone spectroscopy of CO2 at 780 nm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96(2): 289-299.

[15] A J McCaffery. State and species selective energy flow in gas ensembles containing vibrationally excited O2[J]. Journal of Chemical Physics, 2012, 137(13): 134301.

[16] A J McCaffery, R J Marsh. Modeling disequilibrium in gas ensembles: How quantum state populations evolve under multicollision conditions; CO-+Ar, CO, O2, and N2[J]. Journal of Chemical Physics, 2010, 132(7): 074304.

王淑英, 张文军, 戴康, 沈异凡. Na2高位振动态与CO2分子间碰撞能量转移的研究[J]. 中国激光, 2015, 42(4): 0408001. Wang Shuying, Zhang Wenjun, Dai Kang, Shen Yifan. Study of Collisional Energy Transfer between Highly Vibrationally Excited Na2 and CO2[J]. Chinese Journal of Lasers, 2015, 42(4): 0408001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!