光子学报, 2017, 46 (6): 0612005, 网络出版: 2017-06-27   

基于双边带调制的频率扫描干涉型激光测距技术

Laser Ranging of Frequency Scanning Interferometry System Based on Double-sideband Modulation
作者单位
南京航空航天大学 电子信息工程学院 雷达成像与微波光子技术教育部重点实验室,南京 210016
摘要
提出并论证了一种基于双边带调制的双扫频干涉测距技术,利用电-光双边带调制产生的-1和+1阶边带分别作为扫描方向相反的两个扫频信号,在接收端各获得一个频率与相对距离相关的拍频信号,通过将这两个拍频信号相乘的方式来减小由光路中扰动引起的测量误差.利用Optisystem软件进行系统仿真,结果表明,该方法能够有效抑制由于光路中扰动产生的测量误差.设计了实验验证系统,在光路中引入小幅振动作为扰动时,该方法对扰动的抑制比超过14 dB,有效地提升了测距准确度.
Abstract
A laser ranging of dual-sweep frequency scanning interferometry system based on double-sideband modulation was demonstrated. The electro-optic double-sideband modulation was used to create dual swept signals with opposite scanning directions. For each receiving terminal, the beat frequency signal related to relative distance was obtained. By multiplying both beat signals, measurement errors caused by disturbances in the optical path could be greatly reduced. The system was simulated in Optisystem. The simulation results indicate that the variations in the optical path length are eliminated efficiently. In addition, an experimental structure was proposed with vibrations in the optical path length. The experimental results show that the vibrations are suppressed for over 14 dB, which indicates that the precision can be improved effectively.
参考文献

[1] LEE J, KIM Y J, LEE K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10): 716-720.

[2] SA V D B, PERSIJN S T, KOK G J, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement.[J]. Physical Review Letters, 2012, 108(18):1002-1006.

[3] SCHNEIDER R, THU P, STOCKMANN M. Distance measurement of moving objects by frequency modulated laser radar[J]. Optical Engineering, 2001, 40(1): 33-37.

[4] 程鹏飞. 大动态范围高准确度激光测距关键技术研究[D].上海: 中国科学院研究生院上海技术物理研究所, 2014.

    CHENG Peng-fei. Research of key technologies of wide dynamic range and high precision laser distance measurement[D]. Shanghai: Shanghai Institute of Technical Physics (SITP) of the Chinese Academy of Sciences, 2014.

[5] YAO Ting-feng, ZHU Dan, LIU Shi-feng, et al. Wavelength-division multiplexed fiber-connected sensor network for source localization[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1874-1877.

[6] FU Jian-bin, PAN Shi-long. Fiber-connected UWB sensor network for high-resolution localization using optical time-division multiplexing[J]. Optics Express, 2013, 21(18): 21218-21223.

[7] MARRON J C. Frequency-scanning interferometry[C].Optical Fabrication and Testing, Optical Society of America, 2004: OMA3.

[8] LEE S H, KIM M Y, SER J I, et al. Asymmetric polarization-based frequency scanning interferometer[J]. Optics Express, 2015, 23(6):7333-44.

[9] COE P A, HOWELL D F, NICKERSON R B. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment[J]. Measurement Science & Technology, 2004, 15(11): 2175-2187.

[10] LI Zhi-dong. Movement error compensation in frequency scanning interferometry for absolute distance measurement[J]. Acta Optica Sinica, 2011, 31(3): 152-157.

[11] PRELLINGER G, MEINERS-HAGEN K, POLLINGER F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m[J]. Measurement Science and Technology, 2015, 26(8): 084003.

[12] TAO Long, LIU Zhi-gang, ZHANG Wei-bo, et al. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter[J]. Optics Letters, 2014, 39(24): 6997-7000.

[13] DALE J, HUGHES B, LANCASTER A J, et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells[J]. Optics Express, 2014, 22(20): 24869-24893.

[14] KAKUMA S, KATASE Y. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes[J]. Optical Review, 2012, 19(6): 376-380.

[15] YANG H J, NYBERG S, RILES K. High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575(3): 395-401.

[16] MARTINEZ J J, CAMPBELL M A, WARDEN M S, et al. Dual-sweep frequency scanning interferometry using four wave mixing[J]. IEEE Photonics Technology Letters, 2015, 27(7): 733-736.

陈希伦, 王祥传, 潘时龙. 基于双边带调制的频率扫描干涉型激光测距技术[J]. 光子学报, 2017, 46(6): 0612005. CHEN Xi-lun, WANG Xiang-chuan, PAN Shi-long. Laser Ranging of Frequency Scanning Interferometry System Based on Double-sideband Modulation[J]. ACTA PHOTONICA SINICA, 2017, 46(6): 0612005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!