中国激光, 2009, 36 (8): 1973, 网络出版: 2009-08-13   

大功率激光器喷雾冷却中无沸腾区换热性能实验研究

Experiment Study on Non-Boiling Heat Transfer Performance in Spray Cooling for High-Power Laser
作者单位
中国科学技术大学热科学与能源工程系, 安微 合肥 230027
摘要
以水为冷却介质, 采用雾化角60°的Steinen系列1.5和2.0实心圆锥喷嘴, 研究不同流量(3.26~5.0 L/h)时大功率激光器喷雾冷却中的换热性能。结果表明,喷雾冷却“无沸腾”区换热性能不能简单以流量大小来衡量;对于同种型号喷嘴, 压力、流量增大会导致换热性能增强;但对不同型号的喷嘴, 增大压力与流量不能明显增强换热能力。在液滴喷射速度变化不大时, 由于流量增加会引起液滴数通量、液滴粒径大小、液膜厚度等喷雾参数的变化, 这些参数共同影响着换热。冷却效率主要受液体流量和液滴喷射速度共同影响。对于同种型号喷嘴, 压力增强冷却效率下降。相对于光滑表面, 粗糙换热面在喷雾冷却“无沸腾”区有着更好的换热性能和冷却效率。
Abstract
Using water as coolant, Steinen 1.5, 2.0 full-cone nozzles with spray cone angle 60° were applied to study heat transfer performance of spray cooling for high-power laser in non-boiling regime when mass flow rates ranged from 3.26 L/h to 5.0 L/h. The results indicate that heat transfer can not be judged by mass flow rates only. For the same nozzle, the increasing of pressure and mass flow rates resulte in the increasing of heat trarsfer performance. For different nozzles, the heat transfer performance doesn′t increase obvirously, if droplet velocity is not varied significantly, increased mass flow rates can change other spray parameters such as droplet flux, droplet size and film thickness, and all the parameters determine spray heat transfer performance together. Mass flow rates and droplet velocity are the key parameters to influence cooling efficiency. For the same nozzle, enhanced pressure could result in cooling efficiency drop. Compared with smooth wall, the rough wall has better heat transfer performance and cooling efficiency in non-boiling region.
参考文献

[1] 任洪亮,庄礼辉,李银妹. 双光镊测量胶体微粒间相互作用势[J]. 中国激光, 2008, 35(1):151~155

    Ren Hongliang, Zhuang Lihui, Li Yinmei. Measurement of interaction potential between colloidal particles using dual optical tweezers[J]. Chinese J. Lasers, 2008, 35(1):151~155

[2] 王霄,张惠中,丁国民 等. 聚丙烯塑料激光透射焊接工艺[J]. 中国激光, 2008, 35(3):466~471

    Wang Xiao, Zhang Huizhong, Ding Guomin et al.. Laser transmission welding polypropylene plastics[J]. Chinese J. Lasers, 2008, 35(3):466~471

[3] 罗乐,宗仁鹤,周章武 等. 激光在美容中的应用研究[J]. 量子电子学报, 2002, 19(4):323~325

    Lu Le, Zong Renhe, Zhou Zhangwu et al.. Study on the application of laser in cosmetology[J]. Chinese Journal of Quantum Electronics, 2002, 19(4):323~325

[4] 陶毓伽, 淮秀兰, 李志刚 等.大功率固体激光器冷却技术进展[J]. 激光杂志, 2007, 28(2):11~12

    Tao Yujia, Huai Xiulan, Li Zhigang et al.. Advancement of cooling techniques in high-power solid state laser[J]. Laser Journal, 2007, 28(2):11~12

[5] . 大功率电力电子装置冷却系统的原理与应用[J]. 国际电力, 2002, 6(4): 48-52.

    . A discussion on cooling systems of high power electronic equipment[J]. International Electric Power for China, 2002, 6(4): 48-52.

[6] . C. Chow, M. S. Sehembey, M. R. Pais. High heat flux spray cooling.[J]. Annul. Rev. Heat Transfer, 1997, 8: 291-318.

[7] . Lin, R. Ponapean.Heat transfer characteristics of spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746.

[8] . Chow, Jose E. Navedo. Effects of spray characteristics on critical heat flux in sub cooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043.

[9] 周致富,辛慧,陈斌 等. 激光手术喷雾冷却中单个液滴蒸发特性[J]. 中国激光, 2008, 35(6): 952~956

    Zhou Zhifu, Xin Hui, Chen Bin et al.. Evaporation characteristics of a single droplet in laser treatment of port wine stain in conjunction with cryogen spray cooling[J]. Chinese J. Lasers, 2008, 35(6):952~956

[10] Daniel Porter Rini. Computer simulation of a spray cooling system with fc-72[D]. School of Mechanical, Materials and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida, 2001

[11] . Kale, P.M.V. Subbarao. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays[J]. Experimental Thermal and Fluid Science, 2007, 32(2): 571-579.

[12] . Oliphant, B. W. Webb, M. Q. McQuay. An experimental comparison of liquid jet array and spray impingement cooling in the nonboiling regime[J]. Experimental Thermal and Fluid Science, 1998, 18(1): 1-10.

[13] . Mudawar, K.A.Estes. Optimizing and prediction CHF in spray cooling of a square surface[J]. Journal of Heat Transfer, 1996, 118: 672-679.

[14] . Ghodbane, J.P. Holman. Experimental study of spray cooling with Freon-113[J]. International Journal of Heat and Mass Transfer, 1991, 34(45): 1163-1174.

[15] . M. Qiao, S. Chandra. Spray cooling enhancement by addition of a surfactant[J]. ASME Journal of Heat Transfer, 1998, 120(1): 92-98.

[16] A. H. Lefebvre. Atomization and Sprays[M]. Newport: Hemisphere Publishing Corporation, 1989

[17] . K. Lichtarowicz, R. K. Duggins, E. Markland. Discharge coefficients for incompressible non-cavitating flow through long orifices[J]. Journal of Mechanical Engineering Science, 1965, 7(2): 210-219.

[18] Cheng-Chieh Hsieh, Shi-Chune Yao. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J].International Journal of Heat and Mass Transfer,2006, 49(5-6):962~974

[19] . Jia, H. H. Qiu. Experimental investigation of droplet dynamics and heat transfer in spray cooling[J]. Experimental Thermal and Fluid Science, 2003, 27(7): 829-838.

王亚青, 刘明侯, 刘东, 徐侃. 大功率激光器喷雾冷却中无沸腾区换热性能实验研究[J]. 中国激光, 2009, 36(8): 1973. 王亚青, 刘明侯, 刘东, 徐侃. Experiment Study on Non-Boiling Heat Transfer Performance in Spray Cooling for High-Power Laser[J]. Chinese Journal of Lasers, 2009, 36(8): 1973.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!