激光与光电子学进展, 2017, 54 (4): 040003, 网络出版: 2017-04-19   

二维过渡金属硫属化合物的激光发射 下载: 1861次

Laser Emission on Two-Dimensional Transition Metal Dichalcogenides
作者单位
东南大学物理系, 江苏 南京 211189
摘要
以二硫化钼(MoS2)为代表的二维过渡金属硫属化合物(TMDs)具有随厚度/层数变化的光学和电学性质,并且展示出独特的激子效应和较高的光学量子产率,在光电子器件中具有很好的应用前景。近年来,基于TMDs材料的光学性质和光电子器件的研究进展迅速,如通过电场、化学掺杂、缺陷等方式实现了对其光致发光(PL)的调控,并极大地提高了PL发射量子产率;基于TMDs边带异质结和垂直异质结的LEDs被广泛研究并获得了较高的光发射效率;以TMDs作为增益介质,并将其与微盘、光子晶体空腔等耦合实现了低阈值激光发射。从TMDs的结构和光学性质出发,总结了TMDs材料PL的调控手段及效果,并介绍TMDs中激光发射的研究进展,最后对基于TMDs的激光发展进行了展望。
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) such as MoS2 have different optical and electrical properties with the change of thickness and layer number, and exhibit unique excitonic behavior and high optical quantum efficiency, thus they have great potential applications in optoelectronic devices. Recently, there are great progresses on the studies of optical properties and related optoelectronic devices of TMDs. For example, the photoluminescence (PL) of TMD materials can be modulated through the electric field, chemical doping and defects engineering, and the PL quantum efficiency is greatly enhanced. The LEDs based on lateral and vertical heterojunctions stacked by TMD materials are extensively investigated and the high light emission efficiency is demonstrated. The laser emission with low threshold is also realized using TMDs as gain medium and integrated with micro disk and photonic crystals. This review starts from the structures and optical properties of TMDs, summarizes PL modulation methods and effects of TMD materials, introduces the research progresses of laser emission of TMDs, and finally the laser future development based on TMDs is prospected.
参考文献

[1] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[2] Li J L, Tang B, Yuan B, et al. A review of optical imaging and therapy using nanosized graphene and graphene oxide[J]. Biomaterials, 2013, 34(37): 9519-9534.

[3] Mak K F, Ju L, Wang F, et al. Optical spectroscopy of graphene: from the far infrared to the ultraviolet[J]. Solid State Communications, 2012, 152(15): 1341-1349.

[4] Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.

[5] Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.

[6] Qiu D Y, Da Jornada F H, Louie S G. Optical spectrum of MoS2: many-body effects and diversity of exciton states[J]. Physical Review Letters, 2013, 111(21): 216805.

[7] Schuller J A, Karaveli S, Schiros T, et al. Orientation of luminescent excitons in layered nanomaterials[J]. Nature Nanotechnology, 2013, 8(4): 271-276.

[8] Mak K F, He K, Lee C, et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials, 2013, 12(3): 207-211.

[9] Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Letters, 2013, 13(6): 2831-2836.

[10] Nan H, Wang Z, Wang W, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding[J]. ACS Nano, 2014, 8(6): 5738-5745.

[11] Amani M, Lien D H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2[J]. Science, 2015, 350(6264): 1065-1068.

[12] Ross J S, Klement P, Jones A M, et al. Electrically themally excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nature Nanotechnology, 2014, 9(4): 268-272.

[13] Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 2015, 14(3): 301-306.

[14] Wu S, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 2015, 520(7545): 69-72.

[15] Salehzadeh O, Djavid M, Tran N H, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature[J]. Nano Letters, 2015, 15(8): 5302-5306.

[16] Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets[J]. Accounts of Chemical Research, 2014, 47(4): 1067-1075.

[17] Lin Y C, Dumcenco D O, Huang Y S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2[J]. Nature Nanotechnology, 2014, 9(5): 391-396.

[18] Lv R, Robinson J A, Schaak R E, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets[J]. Accounts of Chemical Research, 2014, 48(1): 56-64.

[19] zgür , Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301.

[20] He K, Kumar N, Zhao L, et al. Tightly bound excitons in monolayer WSe2[J]. Physical Review Letters, 2014, 113(2): 026803.

[21] Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J]. Nature Communications, 2013, 4: 1474.

[22] You Y M, Zhang X X, Berkelbach T C, et al. Observation of biexcitons in monolayer WSe2[J]. Nature Physics, 2015, 11(6): 477-481.

[23] Tongay S, Suh J, Ataca C, et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons[J]. Scientific Reports, 2013, 3: 2657.

[24] Cheiwchanchamnangij T, Lambrecht W R L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2[J]. Physical Review B, 2012, 85(20): 205302.

[25] Zeng H, Cui X. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2629-2642.

[26] Zhao W J, Ghorannevis Z, Chu L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J]. ACS Nano, 2012, 7(1): 791-797.

[27] Jariwala B, Voiry D, Jindal A, et al. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals[J]. Chemistry of Materials, 2016, 28(10): 3352-3359.

[28] Huang C C, Kao C C, Lin D Y, et al. A comprehensive study on the optical properties of thin gold-doped Rhenium disulphide layered single crystals[J]. Japanese Journal of Applied Physics, 2013, 52(4S): 04CH11.

[29] Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622.

[30] Yu Z G, Zhang Y W, Yakobson B I. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2[J]. Nano Letters, 2015, 15(10): 6855-6861.

[31] Hong J H, Hu Z X, Probert M, et al. Exploring atomic defects in molybdenum disulphide monolayers[J]. Nature Communications, 2015, 6: 6293.

[32] Zafar A, Nan H Y, Zafar Z, et al. Probing the intrinsic optical quality of CVD grown MoS2[J]. Nano Research, 2016, 9(6): 1752-1762.

[33] Shi H, Yan R, Bertolazzi S, et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals[J]. ACS Nano, 2013, 7(2): 1072-1080.

[34] Komsa H P, Kotakoski J, Kurasch S, et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping[J]. Physical Review Letters, 2012, 109(3): 035503.

[35] van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 2013, 12(6): 554-561.

[36] Gan X, Gao Y, Mak K F, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 2013, 103(18): 181119.

[37] Strauf S, Hennessy K, Rakher M T, et al. Self-tuned quantum dot gain in photonic crystal lasers[J]. Physical Review Letters, 2006, 96(12): 127404.

[38] Strauf S, Jahnke F. Single quantum dot nanolaser[J]. Laser & Photonics Reviews, 2011, 5(5): 607-633.

[39] Ellis B, Mayer M A, Shambat G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[J]. Nature Photonics, 2011, 5(5): 297-300.

[40] Wu S F, Buckley S, Jones A M, et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 2014, 1(1): 011001.

[41] Tanaka Y, Asano T, Akahane Y, et al. Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes[J]. Applied Physics Letters, 2003, 82(11): 1661-1663.

[42] Ye Y, Wong Z J, Lu X, et al. Monolayer excitonic laser[J]. Nature Photonics, 2015(9): 733-737.

[43] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[44] Liu X, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34.

[45] Meng X, Grote R R, Jin W C, et al. Rigorous theoretical analysis of a surface-plasmon nanolaser with monolayer MoS2 gain medium[J]. Optics Letters, 2016, 41(11): 2636-2639.

[46] Yokoyama H, Brorson S D. Rate equation analysis of microcavity lasers[J]. Journal of Applied Physics, 1989, 66(10): 4801-4805.

郑婷, 南海燕, 吴章婷, 倪振华. 二维过渡金属硫属化合物的激光发射[J]. 激光与光电子学进展, 2017, 54(4): 040003. Zheng Ting, Nan Haiyan, Wu Zhangting, Ni Zhenhua. Laser Emission on Two-Dimensional Transition Metal Dichalcogenides[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!