红外与毫米波学报, 2019, 38 (4): 04408, 网络出版: 2019-10-14  

InAs基中红外带间级联激光器中的自加热效应

The effects of self-heating on mid-infrared interband cascade lasers grown on InAs substrates
作者单位
1 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学 物质科学与技术学院,上海 201210
摘要
制备并测试了II型中红外带间级联激光器,制备的器件在脉冲和连续工作模式下最高工作温度分别为275 K和226 K.80 K下器件激射波长为3.8 μm左右,阈值电流密度约17 A/cm2.对器件在连续工作模式下的自加热效应进行了分析,并利用有限元方法模拟了器件连续工作时的温度分布图.分析和模拟结果均表明自加热效应是限制器件连续工作温度的重要因素.提高散热性能将是进一步提升器件工作温度的有效手段.
Abstract
In this paper, InAs-based type-II interband cascade lasers operating at the mid-infrared range were fabricated and characterized. The maximum operating temperatures under pulsed and continuous wave (CW) operating mode are determined to be 275 K and 226 K, respectively. The threshold current density is around 17 A/cm2 at 80 K with an emission wavelength of approximate 3.8 μm. We analyzed the self-heating effects under CW mode and further simulated the temperature contour by the finite element method. The results indicate that the self-heating effect is a critical factor that limits the operating temperature under CW mode for our devices. Further optimization of the heat dissipation performance would be an effective way to raise the operating temperature of these devices.
参考文献

[1] Yang R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlattices and Microstructures, 1995, 17(1): 77-83.

[2] YANG Rui-Qing, LI Lu, JIANG Yu-Chao. Interband cascade lasers: From oringinal concept to practical devices[J]. Progress in Physics (楊瑞青, 李路, 江宇超. 带间级联激光器: 从原始概念到实际器件. 物理学进展), 2014, 34(4): 169-190.

[3] Yang R Q, Zhang D, Murry S J, et al. Type-II interband quantum cascade laser at 3.8 ?m[J]. Electronics Letters, 1997, 33(7): 598-599.

[4] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-II interband cascade laser[J]. Applied physics letters, 2002, 81(3): 397-399.

[5] Kim M, Canedy C L, Bewley W W, et al. Interband cascade laser emitting at λ= 3.75 μ m in continuous wave above room temperature[J]. Applied Physics Letters, 2008, 92(19): 191110.

[6] Meyer J R, Hoffman C A, Bartoli F J, et al. Type‐II quantum-well lasers for the mid‐wavelength infrared[J]. Applied physics letters, 1995, 67(6): 757-759.

[7] Vurgaftman I, Bewley W W, Canedy C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature communications, 2011, 2: 585.

[8] Webster C R, Mahaffy P R, Atreya S K, et al. Mars methane detection and variability at Gale crater[J]. Science, 2015, 347(6220): 415-417.

[9] Borca-Tasciuc T, Achimov D, Liu W L, et al. Thermal conductivity of InAs/AlSb superlattices[J]. Microscale Thermophysical Engineering, 2001, 5(3): 225-231.

[10] Zhou C, Vurgaftman I, Canedy C L, et al. Thermal conductivity tensors of the cladding and active layers of antimonide infrared lasers and detectors[J]. Optical Materials Express, 2013, 3(10): 1632-1640.

[11] Chryssis A, Ryu G, Dagenais M. Thermal impedance of epi-up and epi-down interband cascade lasers[C]//in 23rd Annual Meeting of the IEEE Photonics Society. IEEE, 2010: 421-422.

[12] Tian Z, Yang R Q, Mishima T D, et al. InAs-based interband cascade lasers near 6 μm[J]. Electronics Letters, 2008, 45(1): 48-49.

[13] Tian Z, Chen C, Yang R Q, et al. InAs-based plasmon-waveguide interband cascade lasers[C]//Novel In-Plane Semiconductor Lasers IX. International Society for Optics and Photonics, 2010, 7616: 76161B.

[14] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Applied Physics Letters, 2005, 87(15): 151109.

[15] Tian Z, Yang R Q, Mishima T D, et al. Plasmon-waveguide interband cascade lasers near 7.5 μm[J]. IEEE Photonics Technology Letters, 2009, 21(21): 1588-1590.

[16] Olafsen L J, Aifer E H, Vurgaftman I, et al. Near-room-temperature mid-infrared interband cascade laser[J]. Applied physics letters, 1998, 72(19): 2370-2372.

[17] Chryssis A N. Design and fabrication of high-performance interband cascade tunable external cavity lasers[D]. 2010.

余成章, 徐志成, 陈建新, 何力. InAs基中红外带间级联激光器中的自加热效应[J]. 红外与毫米波学报, 2019, 38(4): 04408. YU Cheng-Zhang, XU Zhi-Cheng, CHEN Jian-Xin, HE Li. The effects of self-heating on mid-infrared interband cascade lasers grown on InAs substrates[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04408.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!