中国激光, 2016, 43 (12): 1206004, 网络出版: 2016-12-09   

航空激光通信系统的特性分析及机载激光通信实验 下载: 549次

Feature Analysis of Aeronautical Laser Communication System and Airborne Laser Communication Experiment
作者单位
1 长春理工大学空间光电技术国家地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学空地激光通信技术国防重点学科实验室, 吉林 长春 130022
摘要
航空平台是天、空、地一体化立体空间网络的重要节点,建立空星、空空、空地激光通信链路是实现机载激光通信的关键。介绍了机载激光通信实验系统的组成与工作原理;进行了机载激光通信系统特殊性分析,包括大气附面层、平台随机大幅度扰动、平台高频振动、大气信道等外界约束环境对激光通信系统性能的影响以及相关抑制技术;具体介绍了飞艇-船舶间空地激光通信实验、双直升机间空空快速捕获实验以及双固定翼飞机间空空远距离激光通信的实验成果。
Abstract
Aviation platform is the critical node of the space-air-ground integration stereo-space network. The establishment of space-to-air, space-to-space and space-to-ground laser communication links is the key to achieving airborne laser communication. The composition and working principle of the airborne laser communication experimental system are introduced. The particularity analysises for the airborne laser communication are carried out, including the influence of the atmospheric boundary layer, substantially random perturbation, platform high-frequency vibration, atmospheric channel and other external constraint environments on the performance of the airborne laser communication system, and the related suppression technologies are studied. The experimental results of the space-to-ground laser communication between airship and ship, the space-to-space rapid capture between helicopters and the space-to-space remote laser communication between fixed wing airships are introduced.
参考文献

[1] 王建军, 徐立军, 李小路. 姿态角随机测量误差对机载激光扫描成像的影响[J]. 中国激光, 2011, 38(3): 0314001.

    Wang Jianjun, Xu Lijun, Li Xiaolu. Impacts of random attitude measurement errors on airborne laser scanning image[J]. Chinese J Lasers, 2011, 38(3): 0314001.

[2] 曹阳, 赵明富. 机载空间激光通信平台间跟踪理论研究[J]. 半导体光电, 2011, 32(2): 255-258.

    Cao Yang, Zhao Mingfu. Research on tracking theory between airborne platforms for free space optical communications[J]. Semiconductor Optoelectronics, 2011, 32(2): 255-258.

[3] 吕春雷, 佟首峰, 宋延嵩. 机载光通信复合轴光路优化设计和跟瞄技术研究[J]. 光子学报, 2012, 41(6): 649-653.

    L Chunlei, Tong Shoufeng, Song Yansong. Optical-path optimization design of compound axis and APT study of airborne laser communication[J]. Acta Photonica Sinica, 2012, 41(6): 649-653.

[4] 邢建斌, 许国良, 张旭苹, 等. 大气湍流对激光通信系统的影响[J]. 光子学报, 2005, 34(12): 1850-1852.

    Xing Jianbin, Xu Guoliang, Zhang Xuping, et al. Effect of the atmospheric turbulence on laser communication system[J]. Acta Photonica Sinica, 2005, 34(12): 1850-1852.

[5] 刘厚通, 陈良富, 苏林. Fernald 前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究[J]. 物理学报, 2011, 60(6): 064204.

    Liu Houtong, Chen Liangfu, Su Lin. Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar[J]. Acta Physica Sinica, 2011, 60(6): 064204.

[6] 向劲松, 胡渝. 星地激光通信中分布式接收阵列的特性研究[J]. 光学学报, 2006, 26(9): 1297-1302.

    Xiang Jingsong, Hu Yu. Study on characteristics of distributed array receiver for satallite to ground laser communication[J]. Acta Optica Sinica, 2006, 26(9): 1297-1302.

[7] Masahiro T. Acquisition and tracking control of satellite-borne laser communication systems and simulation of downlink fluctuations[J]. Optical Engineering, 2006, 45(8): 4-12.

[8] Louthain J A, Schmidt J D. Anisoplanatism in airborne laser communication[J]. Optics Express, 2008, 16(14): 10769-10785.

[9] Skormin V A, Tascillo M A, Busch T E. Adaptive jitter rejection technique applicable to airborne laser communication systems[J]. Optical Engineering, 1995, 34(5): 1263-1268.

[10] Nikulin V, Khandekar R, Sofka J, et al. Acousto-optic pointing and tracking systems for free-space laser communications[C]. SPIE, 2005, 5892: 58921C.

[11] Sofka J, Nikulin V. Bit error rate optimization of an acousto-optic tracking system for free-space laser communications[C]. SPIE, 2006, 6105: 61050L.

[12] Tolker-Nielsen T, Oppenhaeuser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4 SILEX[C]. SPIE, 2002, 4635: 1-15.

[13] Ho T H, Milner S D, Davis C C. Fully optical real-time pointing, acquisition, and tracking system for free space optical link[C]. SPIE, 2005, 5712: 81-92.

[14] Cao Y, Guo J, Huang L W. Variable structure multiple model tracking for airborne laser communication systems[C]. SPIE, 2013, 8906: 890607.

[15] Louthain J A, Schmidt J D. Integrated approach to airborne laser communication[C]. SPIE, 2008, 7108: 71080F.

[16] Maynard J A, Begley D. Airborne laser communications: past, present, and future[C]. SPIE, 2005, 5892: 58920A.

[17] Jiang H, Liu G, Yin F, et al. Laser communications technology with airborne platform[C]. SPIE, 2006, 6031: 603102.

[18] Biswas A, Page N, Neal J, et al. Airborne optical communications demonstrator design and pre-flight test results[C]. SPIE, 2005, 5712: 205-216.

[19] Bagley Z C, Hughes D H, Juarez J C, et al. Hybrid optical radio frequency airborne communications[J]. Optical Engineering, 2012, 51(5): 055006.

[20] Meng L, Wang C, Qian C, et al. Method of high speed flow field influence and restrain on laser communication[C]. SPIE, 2013, 8906: 890623.

宋延嵩, 常帅, 佟首峰, 张立中, 姜会林, 董岩, 董科研, 赵馨, 张雷. 航空激光通信系统的特性分析及机载激光通信实验[J]. 中国激光, 2016, 43(12): 1206004. Song Yansong, Chang Shuai, Tong Shoufeng, Zhang Lizhong, Jiang Huilin, Dong Yan, Dong Keyan, Zhao Xin, Zhang Lei. Feature Analysis of Aeronautical Laser Communication System and Airborne Laser Communication Experiment[J]. Chinese Journal of Lasers, 2016, 43(12): 1206004.

本文已被 15 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!