光学仪器, 2019, 41 (6): 40, 网络出版: 2020-05-19  

基于磁控溅射制备铜基表面增强拉曼散射基底

Fabrication of copper-based SERS substrates by magnetron sputtering
作者单位
1 上海理工大学 机械工程学院,上海 200093
2 上海理工大学 光电信息与计算机工程学院,上海 200093
3 上海大学 材料基因组工程研究院,上海 200041
引用该论文

何煜, 李强, 张玲, 潘登, 孙群. 基于磁控溅射制备铜基表面增强拉曼散射基底[J]. 光学仪器, 2019, 41(6): 40.

Yu HE, Qiang LI, Ling ZHANG, Deng PAN, Qun SUN. Fabrication of copper-based SERS substrates by magnetron sputtering[J]. Optical Instruments, 2019, 41(6): 40.

参考文献

[1] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[2] LI X M, SUN L, DING T R. Multiplexed sensing of mercury(II) and silver(I) ions: a new class of DNA electrochemiluminescent-molecular logic gates[J]. Biosensors and Bioelectronics, 2011, 26(8): 3570-3576.

[3] HAO J M, HAN M J, HAN S M. SERS detection of arsenic in water: a review[J]. Journal of Environmental Sciences, 2015, 36: 152-162.

[4] SZABÓ L, LEOPOLD L F, COZAR B I. SERS approach for Zn(II) detection in contaminated soil[J]. Central European Journal of Chemistry, 2011, 9(3): 410-414.

[5] QIAN X M, PENG X H, ANSARI D O. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 2008, 26(1): 83-90.

[6] CHUNG C, KIM Y K, SHIN D. Biomedical applications of graphene and graphene oxide[J]. Accounts of Chemical Research, 2013, 46(10): 2211-2224.

[7] XIE W, HERRMANN C, KÖMPE K. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions[J]. Journal of the American Chemical Society, 2011, 133(48): 19302-19305.

[8] GERSTEN J, NITZAN A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces[J]. The Journal of Chemical Physics, 1980, 73(7): 3023-3037.

[9] HUANG S X, LING X, LIANG L B. Molecular selectivity of graphene-enhanced Raman scattering[J]. Nano Letters, 2015, 15(5): 2892-2901.

[10] CHEN H Y, LIN M H, WANG C Y. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale[J]. Journal of the American Chemical Society, 2015, 137(42): 13698-13705.

[11] GE J, LI Y, WANG J. Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance[J]. Journal of Alloys and Compounds, 2016, 663: 166-171.

[12] GARNETT E C, CAI W S, CHA J J. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 2012, 11(3): 241-249.

[13] IM H, BANTZ K C, LEE S H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing[J]. Advanced Materials, 2013, 25(19): 2678-2685.

[14] VELEV O D, TESSIER P M, LENHOFF A M. Materials: a class of porous metallic nanostructures[J]. Nature, 1999, 401(6753): 548.

[15] GARCÍA-VIDAL F J, PENDRY J B. Collective theory for surface enhanced Raman scattering[J]. Physical Review Letters, 1996, 77(6): 1163-1166.

[16] QIU H J, ZHANG Z H, HUANG X R. Dealloying Ag–Al alloy to prepare nanoporous silver as a substrate for surface‐enhanced Raman scattering: effects of structural evolution and surface modification[J]. Chemphyschem, 2011, 12(11): 2118-2123.

[17] LIU K, BAI Y C, ZHANG L. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis[J]. Nano Letters, 2016, 16(6): 3675-3681.

[18] YANG T, LIU W N, LI L D. Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal-semiconductor substrate[J]. Nanoscale, 2017, 9(6): 2376-2384.

[19] YAMAMOTO Y S, ITOH T. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies[J]. Journal of Raman Spectroscopy, 2016, 47(1): 78-88.

[20] RAO G F, JIAN X, LV W Q. A highly-efficient route to three-dimensional nanoporous copper leaves with high surface enhanced Raman scattering properties[J]. Chemical Engineering Journal, 2017, 321: 394-400.

[21] MESSIER R, VENUGOPAL V C, SUNAL P D. Origin and evolution of sculptured thin films[J]. Journal of Vacuum Science & Technology A, 2000, 18(4): 1538-1545.

[22] MOVCHAN B A, DEMCHISHIN A V. Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide[J]. Fiz Metallov Metalloved, 1969, 28(4): 653-660.

[23] NUTHONGKUM P, SAKDANUPHAB R, HORPRATHUM M. [Bi]:[Te] control, structural and thermoelectric properties of flexible BixTey thin films prepared by RF magnetron sputtering at different sputtering pressures[J]. Journal of Electronic Materials, 2017, 46(11): 6444-6450.

[24] CHEN L Y, YU J S, FUJITA T. Nanoporous copper with tunable nanoporosity for SERS applications[J]. Advanced Functional Materials, 2009, 19(8): 1221-1226.

[25] DIAO F Y, XIAO X X, LUO B. Two-step fabrication of nanoporous copper films with tunable morphology for SERS application[J]. Applied Surface Science, 2018, 427: 1271-1279.

[26] OKMAN O, KYSAR J W. Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying[J]. Journal of Alloys and Compounds, 2011, 509(22): 6374-6381.

[27] LANG X Y, CHEN L Y, GUAN P F. Geometric effect on surface enhanced Raman scattering of nanoporous gold: improving Raman scattering by tailoring ligament and nanopore ratios[J]. Applied Physics Letters, 2009, 94(21): 213109.

[28] QIAN L H, YAN X Q, FUJITA T. Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements[J]. Applied Physics Letters, 2007, 90(15): 153120.

何煜, 李强, 张玲, 潘登, 孙群. 基于磁控溅射制备铜基表面增强拉曼散射基底[J]. 光学仪器, 2019, 41(6): 40. Yu HE, Qiang LI, Ling ZHANG, Deng PAN, Qun SUN. Fabrication of copper-based SERS substrates by magnetron sputtering[J]. Optical Instruments, 2019, 41(6): 40.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!