Photonic Sensors, 2019, 9 (2): 02151, Published Online: Apr. 12, 2019  

Dual-Core Photonic Crystal Fiber Plasmonic Refractive Index Sensor: A Numerical Analysis

Author Affiliations
Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi-6204, Bangladesh
Abstract
A numerical analysis on dual core photonic crystal fiber (DC-PCF) based surface plasmon resonance (SPR) refractive index sensor is presented. The guiding parameters and required sensing performances are examined with finite element method (FEM) based software under MATLAB environment. According to simulation, it is warranted that the proposed refractive index sensor offers the maximum amplitude sensitivity of 554.9 refractive index unit (RIU.1) and 636.5RIU.1 with the maximum wavelength sensitivity of 5800nm/RIU and 11500nm/RIU, and the sensor resolutions of 1.72×10.5 RIU and 8.7 × 10.6RIU, at analyte refractive index (RI) of 1.40 for x- and y-polarized modes, respectively. As the sensing performance in different wavelength ranges is quite high, the proposed sensor can be used in simultaneous detection for different wavelength ranges. Therefore, the proposed device is of a suitable platform for detecting biological, chemical, biochemical, and organic chemical analytes.
References

[1] M. Y. Azab, M. F. O. Hameed, A. Heikal, M. A. Swillam, and S. Obayya, “Analysis of highly sensitive surface plasmon photonic crystal fiber biosensor,” SPIE, 2018, 10541: 105411N-1.105411N-6.

[2] F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE),” Opto-Electronics Review, 2018, 26(1): 50–56.

[3] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963.

[4] S. M. A. Razzak, Y. Namihira, M. A. Hossain, and A. Khaleque, “Designing birefringence of index-guiding non-hexagonal photonic crystal fibers,” Journal of Optics, 2011, 40(2): 56.64.

[5] A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Applied Optics, 2015, 54(9): 2543–2549.

[6] J. Knight, J. Arriaga, T. Birks, A. O. Blanch, W. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters, 2000, 12(7): 807–809.

[7] W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Optics Express, 2004, 12(2): 299–309.

[8] C. Liu, W. Q. Su, Q. Liu, X. L. Lu, F. M. Wang, T. Sun, et al., “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Optics Express, 2018, 26(7): 9039–9049.

[9] C. Liu, L. Yang, Q. Liu, F. M. Wang, Z. J. Sun, T. Sun, et al., “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics, 2018, 13(3): 779–784.

[10] T. S. Wu, Y. Shao, Y. Wang, S. Q. Cao, W. P. Cao, F. Zhang, et al., “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Optics Express, 2017, 25(17): 20313–20322.

[11] C. Liu, L. Yang, W. Q. Su, F. M. Wang, T. Sun, Q. Liu, et al., “Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel,” Optics Communications, 2017, 382: 162.166.

[12] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research, 2018, 18: 7–12.

[13] A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” Journal of Applied Physics, 2015, 118(14): 682.683.

[14] W. Zhang, S. Q. Lou, and X. Wang, “A polarization filter based on a novel photonic crystal fiber with a gold-coated air hole by using surface plasmon resonance,” Plasmonics, 2018, 13(2): 365–371.

[15] Y. X. Liu, S. P. Zhan, G. T. Cao, H. Yang, J. Li, Q. Liu, et al., “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(2): 1.1.

[16] F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics, 2017, 12(6): 1847–1853.

[17] A .K. Paul, A. K. Sarkar, M. A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sensors Journal, 2018, 18(14): 5761–5769.

[18] A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik–International Journal for Light and Electron Optics, 2018, 170: 400–408.

[19] G. W. An, S. G. Li, X. Yan, X. N. Zhang, Z. Y. Yuan, and Y. N. Zhang, “High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber,” Journal of the Optical Society of America B, 2016, 33(7): 1330–1334.

[20] K. Tong, F. C. Wang, M. T. Wang, P. Dang, Y. X. Wang, and J. R. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik-International Journal for Light and Electron Optics, 2018, 168: 467–474.

[21] A. Bjarklev, J. Broeng, and A. S. Bjarklev, Fabrication of photonic crystal fibres, photonic crystal fibres. Boston, USA: Springer, 2003: 115–130.

[22] A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Optics Letters, 2018, 43(4): 891–894.

[23] D. J. J. Hu and H. P. J. Hu, “Photonics, recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Advances in Optics and Photonics, 2017, 9(2): 257–314.

[24] M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Optical Engineering, 2017, 56(8): 087101-1-087101-6.

[25] S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Optical and Quantum Electronics, 2016, 48(2): 1.11.

[26] A. E. Khalil, A. H. E. Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, et al., “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Optical and Quantum Electronics, 2018, 50(3): 158-1.158-12.

[27] M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, et al., “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal, 2017, 18(1): 133–140.

[28] M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics, 2017, 4(1): 1.11.

[29] A. K. Paul, A. K. Sarkar, and S. A. Razzak, “Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance,” in Proceeding of 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dhaka, Bangladesh, 2017, pp. 856–859.

[30] W. H. Reeves, J. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Optics Express, 2002, 10(14): 609–613.

Alok Kumar, Ajay Krishno, and Abdul. Dual-Core Photonic Crystal Fiber Plasmonic Refractive Index Sensor: A Numerical Analysis[J]. Photonic Sensors, 2019, 9(2): 02151.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!