Photonics Research, 2020, 8 (5): 05000677, Published Online: Apr. 22, 2020  

Laser trimming of the operating wavelength of silicon nitride racetrack resonators Download: 639次

Author Affiliations
1 Department of Information Engineering, Università degli Studi di Padova, Via Giovanni Gradenigo 6, 35131 Padova, Italy
2 Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
Copy Citation Text

Greta De Paoli, Senta L. Jantzen, Thalia Dominguez Bucio, Ilias Skandalos, Christopher Holmes, Peter G. R. Smith, Milan M. Milosevic, Frederic Y. Gardes. Laser trimming of the operating wavelength of silicon nitride racetrack resonators[J]. Photonics Research, 2020, 8(5): 05000677.

References

[1] X. Chen, M. M. Milosevic, S. Stankovic, S. Reynolds, T. Dominguez Bucio, K. Li, D. J. Thomson, F. Y. Gardes, G. T. Reed. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 2018, 106: 2101-2116.

[2] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St.J. Russell. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 2005, 13: 236-244.

[3] Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, D. J. Richardson. Thulium-doped fiber amplifier for optical communications at 2 μm. Opt. Express, 2013, 21: 9289-9297.

[4] R. Kitamura, L. Pilon, M. Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt., 2007, 46: 8118-8133.

[5] G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, Y. Hu. Low loss silicon waveguides for the mid-infrared. Opt. Express, 2011, 19: 7112-7119.

[6] M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, G. Z. Mashanovich. Silicon waveguides and devices for the mid-infrared. Appl. Phys. Lett., 2012, 101: 121105.

[7] J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, A. P. Knights. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photonics, 2015, 9: 393-396.

[8] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3: 229-245.

[9] D. E. Hagan, A. P. Knights. Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2  μm. J. Opt., 2017, 19: 025801.

[10] Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, R. Slavík. High-capacity directly modulated optical transmitter for 2  μm spectral region. J. Lightwave Technol., 2015, 33: 1373-1379.

[11] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 2010, 4: 495-497.

[12] HainbergerR.MuellnerP.MelnikE.MutinatiG.EggelingM.Maese-NovoA.VogelbacherF.KraftJ.KoppitschG.MeinhardtG.SchrankF., “Silicon nitride waveguide integration platform for medical diagnostic applications,” in Progress in Electromagnetic Research Symposium (PIERS) (IEEE, 2016), p. 781.

[13] P. T. Lin, V. Singh, L. Kimerling, A. M. Agarwal. Planar silicon nitride mid-infrared devices. Appl. Phys. Lett., 2013, 102: 251121.

[14] A. Rahim, E. Ryckeboer, A. Z. Subramanian, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, Y. Li, U. Dave, P. Bienstman, N. L. Thomas. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol., 2017, 35: 639-649.

[15] T. Dominguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, F. Y. Gardes. Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications. J. Phys. D, 2017, 50: 025106.

[16] T. D. Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, F. Y. Gardes. Silicon nitride photonics for the near-infrared. IEEE J. Sel. Top. Quantum Electron., 2020, 26: 8200613.

[17] J. F. Bauters, M. J. R. Heck, D. D. John, S. Jonathon, C. M. Bruinink, A. Leinse, R. G. Heideman, J. Daniel, J. E. Bowers. Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding. Opt. Express, 2011, 19: A1272-A1278.

[18] Y.-D. Yang, Y. Li, Y.-Z. Huang, A. W. Poon. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt. Express, 2014, 22: 22172-22183.

[19] Q. Liu, X. Tu, K. Woo, J. Sheng, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, M. Kyoung. Chemical highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B, 2013, 188: 681-688.

[20] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 2011, 36: 3398-3400.

[21] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 2015, 40: 5117-5120.

[22] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J. P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 1997, 15: 998-1005.

[23] I. Kiyat, A. Aydinli, N. Dagli. Low-power thermooptical tuning of SOI resonator switch. IEEE Photon. Technol. Lett., 2006, 18: 364-366.

[24] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435: 325-327.

[25] Y. Sun, X. Fan. Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem., 2011, 399: 205-211.

[26] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, J. E. Cunningham. Computer systems based on silicon photonic interconnects. Proc. IEEE, 2009, 97: 1337-1361.

[27] V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, L. Kimerling. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express, 2010, 18: 17631-17639.

[28] M. M. Milosevic, X. Chen, W. Cao, A. F. Runge, Y. Franz, C. G. Littlejohns, S. Mailis, A. C. Peacock, D. J. Thomson, G. T. Reed. Ion implantation in silicon for trimming the operating wavelength of ring resonators. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 8200107.

[29] X. Chen, M. M. Milosevic, D. J. Thomson, A. Z. Khokhar, Y. Franz, A. F. Runge, S. Mailis, A. C. Peacock, G. T. Reed. Post-fabrication phase trimming of Mach-Zehnder interferometers by laser annealing of germanium implanted waveguides. Photon. Res., 2017, 5: 578-582.

[30] B. Chen, X. Yu, X. Chen, M. M. Milosevic, D. J. Thomson, A. Z. Khokhar, S. Saito, O. L. Muskens, G. T. Reed. Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices. Opt. Express, 2018, 26: 24953-24963.

[31] J. J. Ackert, J. K. Doylend, D. F. Logan, P. E. Jessop, R. Vafaei, A. P. Knights. Defect-mediated resonance shift of silicon-on-insulator racetrack resonators. Opt. Express, 2011, 19: 11969-11976.

[32] T. Fan, Z. Xia, A. Adibi, A. A. Eftekhar. Highly-uniform resonator-based visible spectrometer on a Si3N4 platform with robust and accurate post-fabrication trimming. Opt. Lett., 2018, 43: 4887-4890.

[33] ShenY.DivlianskyI. B.BasovD. N.MookherjeaS., “Perfect set-and-forget alignment of silicon photonic resonators and interferometers,” in Optics InfoBase Conference (2011), pp. 13.

[34] GeuzebroekD. H.KleinE. J.KeldermanH.TanF. S.KlunderD. J. W.DriessenA., “Thermally tuneable, wide FSR switch based on micro-ring resonators,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (2002), pp. 155158.

[35] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 2007, 1: 407-410.

[36] J. K. Doylend, D. F. Logan, R. Vafaei, A. P. Knights, L. Chrostowski, J. J. Ackert, P. E. Jessop. Defect-mediated resonance shift of silicon-on-insulator racetrack resonators. Opt. Express, 2011, 19: 11969-11976.

[37] L. Zhou, K. Okamoto, S. J. B. Yoo. Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding. IEEE Photon. Technol. Lett., 2009, 21: 1175-1177.

[38] D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, K. K. Gleason. Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material. Opt. Lett., 2005, 30: 2251-2253.

[39] SparacinD. K.LockJ. P.HongC.-Y.GleasonK. K.KimerlingL. C.MichelJ., “Trimming of silicon nitride microring resonators with a polysilane top cladding,” in IEEE International Conference on Group IV Photonics (2005), pp. 117119.

[40] A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, A. Melloni. Photo-induced trimming of chalcogenide-assisted silicon waveguides. Opt. Express, 2012, 20: 15807-15817.

[41] J. Schrauwen, D. V. Thourhout, R. Baets. Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt. Express, 2008, 16: 3738-3743.

[42] S. Ueno, T. Naganawa, Y. Kokubun. High UV sensitivity of SiON film and its application to center wavelength trimming of microring resonator filter. IEICE Trans. Electron., 2005, E88-C: 998-1004.

[43] H. Haeiwa, T. Naganawa, Y. Kokubun. Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core. IEEE Photon. Technol. Lett., 2004, 16: 135-137.

[44] G. Piccoli, M. Bernard, M. Ghulinyan. Permanent mitigation of loss in ultrathin silicon-on-insulator high-Q resonators using ultraviolet light. Optica, 2018, 5: 1271-1278.

[45] S. L. Scholl, A. Jantzen, R. H. S. Bannerman, P. C. Gow, D. H. Smith, J. C. Gates, L. J. Boyd, P. G. R. Smith, C. Holmes. Thermal approach to classifying sequentially written fiber Bragg gratings. Opt. Lett., 2019, 44: 703-706.

[46] C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, P. G. R. Smith. Direct UV written planar Bragg gratings that feature zero fluence induced birefringence. Meas. Sci. Technol., 2015, 26: 125006.

[47] C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith. Direct UV-written planar Bragg grating sensors. Meas. Sci. Technol., 2015, 26: 112001.

[48] Z. Yin, F. W. Smith. Free-energy model for bonding in amorphous covalent alloys. Phys. Rev. B, 1991, 43: 4507-4510.

[49] J. J. Mei, H. Chen, W. Z. Shen, H. F. Dekkers. Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films. J. Appl. Phys., 2006, 100: 073516.

[50] I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, D. Murzalinov. Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films. Thin Solid Films, 2017, 626: 70-75.

[51] H. Charifi, A. Slaoui, J. P. Stoquert, H. Chaib, A. Hannour. Opto-structural properties of silicon nitride thin films deposited by ECR-PECVD. World J. Condens. Matter Phys., 2016, 6: 7-16.

[52] TengJ.DumonP.BogaertsW.ZhangH.JianX.ZhaoM.MorthierG.BaetsR., “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in IEEE International Conference on Group IV Photonics GFP (2009), pp. 7779.

[53] https://doi.org/10.5258/SOTON/D1219.

Greta De Paoli, Senta L. Jantzen, Thalia Dominguez Bucio, Ilias Skandalos, Christopher Holmes, Peter G. R. Smith, Milan M. Milosevic, Frederic Y. Gardes. Laser trimming of the operating wavelength of silicon nitride racetrack resonators[J]. Photonics Research, 2020, 8(5): 05000677.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!