光学学报, 2012, 32 (2): 0218001, 网络出版: 2011-12-16   

荧光单分子的频率域纳米级快速定位算法及其在超分辨荧光成像中的应用

Fast Fourier-Domain Localization Algorithm of Single Molecule with Nanometer Resolution for Super-Resolution Fluorescence Imaging
作者单位
深圳大学光电工程学院教育部/广东省光电子器件与系统重点实验室, 广东 深圳 518060
摘要
为了解决现有单分子定位算法中定位速度慢和对噪声有评估依赖性的问题,基于补零快速傅里叶变换和相位梯度算子提出一种新型的噪声自由的频率域非迭代荧光单分子定位算法。计算机模拟结果表明该算法定位精度可达纳米量级,而定位速度与解线性方程组法在同一个数量级。进而在传统实验参数条件下,对不同间隔分子带模型进行了模拟超分辨成像。模拟结果表明,可以区分中心相隔30 nm的两个分子带。此外,将该算法用于HeLa细胞突起中微丝束结构的荧光超分辨成像,从重构获得的图像中可以看到微丝束的直径为75~200 nm,验证了该算法的实用性。
Abstract
In order to improve the computational speed and prior background noise-dependent problem of single molecule localization algorithm, a Fourier domain localization scheme based on zero-padded fast Fourier transform and phase gradient operators is used to obtain a powerful mathematical model for localizing a single molecule without numerical fitting. Numerical simulations indicate that the proposed method exhibits nanometer scale localization precision while executing almost as fast as the fluoroBancroft algorithm. Furthermore, a sample consisted of several lines of molecules are simulated imaged. The results demonstrate that two lines of molecules separated by 30 nm can be resolved. Finally, super-resolution images of filopodia in HeLa cells are reconstructed based on the method, in which filopodia with diameter of 75~200 nm are resolved.
参考文献

[1] Russell E. Thompson, Daniel R. Larson, Watt W. Webb. Precise nanometer localization analysis for individual fluorescent probe[J]. Biophys. J., 2002, 82(5): 2775~2783

[2] 全廷伟, 曾绍群, 吕晓华. 超分辨成像中荧光分子定位算法性能比较[J]. 中国激光, 2010, 37(11): 2714~2718

    Quan Tingwei, Zeng Shaoqun, Lü Xiaohua. Comparison of algorithms for localization of single fluorescent molecule in super resolution imaging[J]. Chinese J. Lasers, 2010, 37(11): 2714~2718

[3] M. Lakadamyali, M. J. Rust, H. P. Babcock et al.. Visualizing infection of individual influenza viruses[J]. P. Natl. Acad. Sci USA, 2003, 100(6): 9280~9285

[4] C. Kural, H. Balci, P. R. Selvin. Molecular motors one at a time: FIONA to the rescue [J]. J. Phys: Condens. Matter, 2005, 17(47): S3979~S3995

[5] W. E. Moerner. New directions in single-molecule imaging and analysis [J]. P. Natl. Acad. Sci. USA, 2007, 104(31): 12596~12602

[6] C. Joo, H. Balci, Y. Ishitsuka et al.. Advances in single-molecule fluorescence methods for molecular biology[J]. Ann. Rev. Biochem., 2008, 77(1):51~76

[7] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像[J]. 物理学报, 2004, 53(5): 1325~1330

    Wang Chen, Wang Guiying, Xu Zhizhan. The application of total internal reflection fluorescence microscopy in single fluorophore molecules axial imaging[J]. Acta Physica Sinica, 2004, 53(5): 1325~1330

[8] 毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283~1307

    Mao Zhengle, Wang Chen, Cheng Ya. Superresolution far-field fluorescence bio-imaging:breaking the diffraction barrier[J]. Chinese J. Lasers, 2008, 35(9): 1283~1307

[9] 何毅, 张雨东, 李国俊 等. 超高斯相位型光瞳滤波器轴向超分辨性能 [J]. 光学学报, 2010, 30(9): 2568~2572

    He Yi, Zhang Yudong, Li Guojun et al.. Axial super-resolution effects of super-Gaussian phase filters [J]. Acta Optica Sinica, 2010, 30(9): 2568~2572

[10] E. Betzig, G. H. Patterson, R. Sougrat et al.. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642~1645

[11] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophys. J., 2006, 91(11): 4258~4272

[12] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793~796

[13] Danni Chen, Bin Yu, Junle Qu et al.. Background suppression by axially selective activation in single-molecule localization microscopy[J]. Opt. Lett., 2010, 35(6): 886~888

[14] 程亚, 陈建芳. 利用具有奇异非线性光学特性的纳米粒子突破光学衍射极限[J]. 激光与光电子学进展, 2009, 46(8): 35~40

    Cheng Ya, Chen Jianfang. Breaking the diffraction limit using silica nanoparticles with exotic nonlinear optical properties[J]. Laser & Optoelectronics Progress, 2009, 46(8): 35~40

[15] Y. Feng, J. Goree, B. Liu. Accurate particle position measurement from images[J]. Rev. Sci. Instrum., 2007, 78(5): 053704

[16] C. M. Anderson, G. N. Georgiou, I. E. G. Morrison et al.. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled camera [J]. J. Cell Sci., 1992, 101(2): 415~425

[17] S. B. Andersson. Localization of a fluorescent source without numerical fitting [J]. Opt. Express, 2008, 16(23): 18714~18724

[18] Bo Zhang, Josiane Zerubia, Jean-Christophe Olivo-Marin. Gaussian approximations of fluorescence microscope: point spread function models[J]. Appl. Opt., 2007, 46(10): 1819~1829

[19] Changsong Yang, Lubov Czech, Silke Gerboth et al.. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells[J]. PLoS Biology, 2007, 5(11): 2624~2645

于斌, 陈丹妮, 刘磊, 屈军乐, 牛憨笨. 荧光单分子的频率域纳米级快速定位算法及其在超分辨荧光成像中的应用[J]. 光学学报, 2012, 32(2): 0218001. Yu Bin, Chen Danni, Liu Lei, Qu Junle, Niu Hanben. Fast Fourier-Domain Localization Algorithm of Single Molecule with Nanometer Resolution for Super-Resolution Fluorescence Imaging[J]. Acta Optica Sinica, 2012, 32(2): 0218001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!