红外与激光工程, 2019, 48 (1): 0125001, 网络出版: 2019-04-02   

基于石墨烯的光控太赫兹调制器

Optically controlled graphene based terahertz modulator
作者单位
1 南开大学 现代光学研究所 天津市光电传感器与传感网络重点实验室, 天津 300350
2 中国科学院上海应用物理研究所 微观界面物理与探测重点实验室 物理生物学研究室, 上海 201800
摘要
研究了锗基单层石墨烯结构宽带光控太赫兹调制器。利用实验室搭建的太赫兹时域光谱系统, 实验证明了在1 550 nm 飞秒光泵浦下, 该太赫兹调制器工作带宽为0.2~1.5 THz。当泵浦光功率从0增加到250 mW时, 该太赫兹波调制器的平均透过率从40%下降到22%, 平均吸收系数从19 cm-1增加到44 cm-1, 在0.2~0.7 THz, 调制深度均高于50%, 最大调制深度为62%(0.38 THz)。实验结果表明, 相比于纯锗基太赫兹调制器, 单层石墨烯的引入能增强对太赫兹波的调制效果。
Abstract
A spectrally wide-band terahertz modulator based on monolayer graphene on germanium (GOG) was proposed. Utilizing a homemade THz-TDS (Terahertz-time domain spectroscopy) system, it was experimentally demonstrated that the THz modulator can be tuned by a 1 550 nm pump beam in a frequency range from 0.2 to 1.5 THz. The average transmittance of THz decreased from 40% to 22% when the pump power was increased to 250 mW, while the absorption coefficient averaged increased from 19 to 44 cm-1. The maximum modulation depth of the GOG modulator can reach as high as 62% at 0.38 THz and in a frequency range from 0.2 to 0.7 THz, the modulation depth was over 50%. Compared with bare Ge, it was proved that the modulation performance can be moderately enhanced by introducing monolayer graphene. This novel optically controlled graphene based THz modulator provides a feasible method for terahertz applications in communication and imaging.
参考文献

[1] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nat Photonics, 2016, 10(6): 371-379.

[2] Guo L H, Wang X K, Zhang Y. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611. (in Chinese)

[3] Li Han, Yu Chen. Terahertz spectral detection in human renal tissue[J]. Infrared and Laser Engineering, 2016, 45(5): 0525001. (in Chinese)

[4] Zhang W T, Li Y W, Zhan P P, et al. Recognition of transgenic soybean oil based on terahertz timedomain spectroscopy and PCA-SVM [J]. Infrared and Laser Engineering, 2017, 46(11): 1125004. (in Chinese)

[5] Xie Q, Yang H R, Li H G, et al. Explosive identification based on terahertz time-domain spectral system[J]. Optics and Precision Engineering, 2016, 24(10): 2392. (in Chinese)

[6] Zhang L, Liu S, Cui T J. Theory and applications of coding metamaterials[J]. Chinese Optis, 2017, 10(1): 1-12. (in Chinese)

[7] Wang G C, Zhang J N, Zhang B, et al. Photo-excited terahertz switch based on composite metamaterial structure[J]. Opt Commun, 2016, 374: 64-68.

[8] Yang J, Gong C, Zhao J Y, et al. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optis, 2017, 10(1): 77-85. (in Chinese)

[9] Yang J, Gong C, Sun L, et al. Tunable reflecting terahertz filter based on chirped metamaterial structure[J]. Sci Rep, 2016, 6: 38732.

[10] Kleine O T, Dawson P, Pierz K, et al. Room-temperature operation of an electrically driven terahertz modulator[J]. Appl Phys Lett, 2004, 84(18): 3555-3557.

[11] Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(6): 783-790.

[12] Chen H T, Yang H, Singh R, et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials[J]. Phys Rev Lett, 2010, 105(24): 247402.

[13] Chen H M, Su J, Wang J. L, et al. Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals[J]. Opt Express, 2011, 19(4): 3599-3603.

[14] Sensale R B, Yan R, Rafique S, et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Lett, 2012, 12(9): 4518-4522.

[15] Li Q, Tian Z, Zhang X Q, et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nat Commun, 2015, 6: 7082.

[16] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications[J]. Science, 2013, 341(6146): 620-621.

[17] Li X S, Cai W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312-1314.

[18] Liang L J, Qi M Q, Yang J, et al. Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials[J]. Adv Opt Mater, 2015, 3(10): 1374-1380.

[19] Chen J, Chen Y Q, Zhao H W, et al. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz[J]. Opt Express, 2007, 15(19): 12060.

[20] Herrscher M, Grundmann M, Droge E, et al. Epitaxial lift off InGaAs/InP MSM photodetectors on Si[J]. Electron Lett, 1995, 31(16): 1383-1384.

[21] Duvillaret L, Garet F, Coutaz J L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy[J]. Appl Opt, 1999, 38(2): 409-415.

[22] Chen S, Fan F, Miao Y, et al. Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets[J]. Nanoscale, 2016, 8(8): 4713-4719.

[23] Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192.

戴子杰, 杨晶, 龚诚, 张楠, 孙陆, 刘伟伟. 基于石墨烯的光控太赫兹调制器[J]. 红外与激光工程, 2019, 48(1): 0125001. Dai Zijie, Yang Jing, Gong Cheng, Zhang Nan, Sun Lu, Liu Weiwei. Optically controlled graphene based terahertz modulator[J]. Infrared and Laser Engineering, 2019, 48(1): 0125001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!