光子学报, 2018, 47 (4): 0407002, 网络出版: 2018-03-15   

双波长照明下的非干涉相位恢复算法

Non-interence Phase Retrieval Algorithm with Two Wavelength Illumination
作者单位
1 安徽大学 电子信息工程学院 计算智能与信号处理教育部重点实验室, 合肥 230601
2 陆军炮兵防空兵学院 十一系, 合肥 230031
摘要
针对原有基于强度传输方程(TIE)的非干涉相位恢复技术只适用于单波长条件下近距离传播时相位求解的局限, 提出了一种双波长照明条件下的TIE算法.该算法在求解过程中考虑两个波长下相位间的相关约束, 并引入了合成波长的概念.同时, 考虑到TIE法在远距离传播时相位恢复精度较低的问题, 将其与角谱迭代算法结合, 提出了一种双波长混合迭代算法.实验结果表明, 双波长TIE算法相位恢复图的误差平均值降低到0.191 2; 在远距离传播时, 双波长混合迭代算法相位恢复图的误差平均值降低到0.220 2.表明所提算法可以在双波长照明下有效地恢复相位信息, 并且不受距离的限制.
Abstract
Aiming at the limitation of the original non-interfering phase retrieval technique based on the Transport of Intensity Equation(TIE) which is only suitable for the short distance regions propagation under single wavelength condition, a phase retrieval algorithm based on TIE method under a two wavelength illumination condition is proposed. The algorithm takes into account the correlation constraints between the two phases under two separate wavelength and the concept of synthetic wavelength is introduced. Meanwhile, considering the limitation of phase retrieval accuracy at longer distance transmission, a two wavelength hybrid iterative algorithm is proposed by combining the aforementioned algorithm with the angular iterative algorithm. The experimental results show that the error of phase diagram retrieved by the two-wavelength TIE algorithm is reduced to 0.191 2 on average; the error of phase diagram retrieved by the proposed two wavelength hybrid iterative algorithm is reduced to 0.220 2 on average. The proposed algorithm can effectively recover the phase information under two wavelength illuminations and is not limited by the distance.
参考文献

[1] 程鸿, 陈娅萍, 张成, 等. 基于正弦光栅调制的相位恢复[J]. 光子学报, 2016, 45(4): 0405003.

    CHENG Hong, CHEN Ya-ping, ZHANG Cheng, et al. Phase recovery on sinusoidal optical grating modulation[J]. Acta Photonica Sinica, 2016, 45(4): 0405003.

[2] ZUO C, SUN J S, LI J J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1): 7654.

[3] TEAGUE M R. Deterministic phase retrieval: a Green’s function solution[J].Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

[4] PANDEY N, CHOSH A, KHARE K.Two-dimensional phase unwrapping using the transport of intensity equation[J]. Applied Optics, 2016, 55(9): 2418.

[5] FAULKNER H M, RODENBURG J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J].Physical Review Letters, 2004, 93(2): 023903.

[6] SOLTANI P, DARUDI A, NEHMETALLAH G, et al. Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance[J]. Applied Optics, 2016, 55(35): 10067-10072.

[7] 程鸿, 章权兵, 韦穗, 等. 基于强度传输方程的相位检索[J]. 光子学报, 2011, 40(10): 1566-1570.

    CHENG Hong, ZHANG Quan-bing, WEI Sui, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10): 1566-1570.

[8] 程鸿, 吕倩倩, 张文君, 等. 基于硅基液晶变焦透镜的相位恢复方法[J].中国激光, 2017, 44(3): 176-182.

    CHENG Hong, LU Qian-qian, ZHANG Wen-jun, et al. Phase retrieval method based on liquid crystal on silicon tunable-lens[J]. Chinese Journal of Lasers, 2017, 44(3): 176-182.

[9] AMIRI J, DARUDI A, KHADEMI S, et al. Application of transport-of-intensity equation in fringe analysis[J]. Optics Letters, 2014, 39(10): 2864-2868.

[10] ZHANG C, CHENG H, SHEN C, et al. Two-wavelength transport of intensity equation for phase unwrapping[C]. The 2nd International Conference on Fuzzy Systems and Data Mining, 2016, 293: 618-624.

[11] GASS J, DAKOFF A, KIM M K. Phase imaging without 2pi ambiguity by multiwavelength digital holography[J].Optics Letters, 2003, 28(13): 1141-1143.

[12] GUREVEY T E, NUGENT K A.Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1): 339-346.

[13] JINGSHAN Z, CLAUS RA, DAUWELS J, et al. Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Optics Express, 2014, 22(9): 10661-74.

[14] WALLER L, TIAN L, BARBASTATHIS G.Transport of Intensity phase-amplitude imaging with higher order intensity derivatives[J]. Optics Express, 2010, 18(12): 12552-61.

[15] BAO P, PEDRINI G, OSTEN W. Optical surface profile measurement using phase retrieval by tuning the illumination wavelength[J].Optics Communications, 2012, 285(24): 5029-5036.

[16] LI Y, XIAO W, PAN F,et al. Phase retrieval from double axially displaced holograms for dual-wavelength in-line holography[J]. Chinese Optics Letters, 2014, 12(2): 30-33.

[17] FRANK J, ALTMEYER S, WERNICKE G. Non-interferometric, non-iterative phase retrieval by Green's functions[J]. Journal of the Optical Society of America, 2010, 27(10): 2244-2251.

[18] 李永华. X射线类同轴法及光栅法相称成像的相位恢复算法研究[D]. 北京: 清华大学工程物理系, 2010.

    LI Yong-hua. Study on phase retrieval algorithms of X-ray in-line and grating-based phase-contrast imaging[D]. Beijing: Department of Engineering Physics, Tsinghua University, 2010.

[19] 左超, 陈 钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43(6): 219-249.

    ZUO Chao, CHEN Qian, SUN Jia-song, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 2016, 43(6): 219-249.

程鸿, 高要利, 徐姗姗, 邓会龙, 韦穗. 双波长照明下的非干涉相位恢复算法[J]. 光子学报, 2018, 47(4): 0407002. CHENG Hong, GAO Yao-li, XU Shan-shan, DENG Hui-long, WEI Sui. Non-interence Phase Retrieval Algorithm with Two Wavelength Illumination[J]. ACTA PHOTONICA SINICA, 2018, 47(4): 0407002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!