中国激光, 2017, 44 (6): 0610003, 网络出版: 2017-06-08   

米-拉曼散射激光雷达反演对流层气溶胶消光系数廓线 下载: 656次

Inversion of Tropospheric Aerosol Extinction Coefficient Profile by Mie-Raman Scattering Lidar
作者单位
南京信息工程大学大气物理学院, 江苏 南京 210044
摘要
介绍了基于米-拉曼散射激光雷达的南京北郊大气气溶胶观测实验, 采用小波分析中的软硬阈值方式处理拉曼散射激光雷达回波信号, 选取不同的阈值和不同的小波函数处理拉曼散射激光雷达回波信号, 得到了平滑的拉曼散射激光雷达信号。根据拉曼散射激光雷达原理反演对流层高空大气气溶胶消光系数廓线, 借助弗纳尔德方法并利用米散射激光雷达气溶胶观测数据, 反演得到对流层低空大气气溶胶消光系数廓线。实验观测系统中有瑞利、米散射和拉曼散射3个接收通道, 重点研究了米散射和拉曼散射通道接收到的观测数据, 对南京北郊2011-12-08晚间拉曼散射激光雷达的气溶胶观测数据进行4种不同阈值处理。选择合适的阈值对实验观测数据进行去噪, 然后利用反演原理公式并结合距离矫正信号对观测数据进行反演, 得到对流层高空大气气溶胶消光系数廓线; 利用其中一处的气溶胶消光系数可以反演得到对流层低空大气气溶胶消光系数廓线。利用米-拉曼散射激光雷达联合反演对流层气溶胶消光系数廓线, 可以清晰看出气溶胶的分布特征, 对流层低空自由大气的气溶胶消光系数最大值一般为0.1 km-1左右, 表明对流层低空自由大气比较干净; 对流层高空大气气溶胶消光系数在云影响下可达到6 km-1, 无云时气溶胶消光系数最大值一般为0.1 km-1左右, 表明高空大气比较干净。
Abstract
An observation experiment of atmospheric aerosol based on Mie-Raman scattering lidar in northern suburb of Nanjing is introduced. A soft and hard threshold method is used to deal with Raman scattering lidar′s echo signal with wavelet analysis, and different thresholds and different wavelet functions are selected to process the Raman scattering lidar′s echo signal. Smoothed Raman scattering lidar′s echo signal is obtained. Upper tropospheric atmospheric aerosol extinction coefficient profiles are inversed based on Raman scattering lidar principle. With the Fernald method and the Mie scattering lidar′s observation data of aerosol, the atmospheric aerosol extinction coefficient profile in low tropospheric can be obtained. There are three receiving channels in the experimental observation system, including Rayleigh, Mie and Raman scattering channels. The data observed in Mie and Raman scattering channels are mainly studied. Raman scattering lidar′s aerosol observational data on 2011-12-08 in northern suburb of Nanjing is processed by four different thresholds. Appropriate threshold is selected to denoise the experimental observed data, and we use the formula of the inversion principle and combine with the distance correction signal to inverse the observed data, and the extinction coefficient profiles of the upper tropospheric atmospheric aerosol are obtained. The aerosol extinction coefficient profiles of low troposphere atmospheric aerosol can be retrieved based on one of the aerosol extinction coefficients of upper tropospheric atmospheric aerosol. After the Mie-Raman scattering lidar joint inversion of tropospheric aerosol extinction coefficient profile, we can clearly find the distributions of aerosol characteristics. The maximum value of aerosol extinction coefficient of low tropospheric free atmosphere is generally about 0.1 km-1, and it shows that free atmospheric of low tropospheric is relatively clean. The aerosol extinction coefficient of upper tropospheric can reach 6 km-1 under the influence of the cloud, and the maximum value of aerosol extinction coefficient is about 0.1 km-1 when there is no cloud. The result shows that the upper atmosphere is relatively clean.
参考文献

[1] 李军霞, 银 燕, 李培仁, 等. 气溶胶影响云和降水的机理和观测研究进展[J]. 气象科学, 2014, 34(5): 581-590.

    Li Junxia, Yin Yan, Li Peiren, et al. Advances in research on mechanism and observation of impacts of aerosol on cloud and precipitation[J]. Journal of the Meteorological Sciences, 2014, 34(5): 581-590.

[2] 王 英, 李令军, 李成才. 北京大气能见度和消光特性变化规律及影响因素[J]. 中国环境科学, 2015, 35(5): 1310-1318.

    Wang Ying, Li Lingjun, Li Chengcai. The variation characteristics and influence factors of atmospheric visibility and extinction effect in Beijing[J]. China Environmental Science, 2015, 35(5):1310-1318.

[3] 杜 萍, 钱泽雨, 陈长和. 利用太阳辐射资料反演宽频上的气溶胶光学厚度[J]. 高原气象, 2002, 21(1): 79-84.

    Du Ping, Qian Zeyu, Chen Changhe. A study of retrieving aerosol optical depths from direct solar irradiation[J]. Plateau Meteorology, 2002, 21(1): 79-84.

[4] 吴立新, 吕 鑫, 秦 凯, 等. 基于太阳光度计地基观测的徐州气溶胶光学特性变化分析[J]. 科学通报, 2016, 61(20): 2287-2298.

    Wu Lixin, Lü Xin, Qin Kai, et al. Analysis to Xuzhou aerosol optical characteristics with ground-based measurements by sun photometer[J]. Chinese Science Bulletin, 2016, 61(20): 2287-2298.

[5] Potdar M B, Sharma S A, Parikh V Y, et al. Remote sensing of spectral signatures of tropospheric aerosols[J]. Journal of Earth System Science, 2004, 113(1): 103-116.

[6] Ansmann A, Wandinger U, Riebesell M, et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 1992, 31(33): 7113-7131.

[7] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.

[8] Fernald F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 1984, 23(5): 652-653.

[9] Cao N W, Yang S B, Xie Y H, et al. Aerosol profiling by Raman lidar in Nanjing, China[J]. Optics and Spectroscopy, 2015, 119(4): 700-707.

[10] 谢建林, 杜 娟, 袁小平. 基于MATLAB的小波去噪方法研究[J]. 能源技术与管理, 2005(2): 71-72.

    Xie Jianlin, Du Juan, Yuan Xiaoping. The study on wavelet denoising under the environment of MATLAB[J]. Energy Technology and Management, 2005(2): 71-72.

[11] 杜浩藩, 丛 爽. 基于MATLAB小波去噪方法的研究[J]. 计算机仿真, 2003, 20(7): 119-122.

    Du Haofan, Cong Shuang. The study on wavelet denoising under the environment of MATLAB[J]. Computer Simulation, 2003, 20(7): 119-122.

[12] 王新楼. 小波去噪方法分析与Matlab仿真[J]. 工业控制计算机, 2008, 82(6): 55-56.

    Wang Xinlou. Wavelet denoising method analysis and Matlab simulation[J]. Industrial Control Computer, 2008, 82(6): 55-56.

[13] 林东升. 基于Matlab的小波阈值图像去噪方法研究[J]. 电脑知识与技术, 2013(11): 2662-2663.

    Lin Dongsheng. Research on wavelet thresholding denoising method based on Matlab[J]. Computer Knowledge and Technology, 2013(11): 2662-2663.

[14] 邱金桓, 郑斯平, 黄其荣, 等. 北京地区对流层中上部云和气溶胶的激光雷达探测[J]. 大气科学, 2003, 27(1): 1-7.

    Qiu Jinhuan, Zheng Siping, Huang Qirong, et al. Lidar measurements of cloud and aerosol in the upper troposphere in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(1): 1-7.

[15] 迟如利, 吴德成, 刘 博, 等. 双波长米散射激光雷达探测对流层气溶胶消光特性[J]. 光谱学与光谱分析, 2009, 29(6): 1468-1472.

    Chi Ruli, Wu Decheng, Liu Bo, et al. Dual-wavelength Mie lidar observations of tropospheric aerosols[J]. Spectroscopy and Spectral Analysis, 2009, 29(6): 1468-1472.

[16] 陈俊斌, 朱 霞, 王凯俊, 等. 大气对流层气体组分随高度变化的理论预期[J]. 后勤工程学院学报, 2014(4): 60-65.

    Chen Junbin, Zhu Xia, Wang Kaijun, et al. Theoretical predictions for components of atmosphere convection layer varying by height above sea level[J]. Journal of Logistical Engineering University, 2014(4): 60-65.

[17] 薛大同. 对地球大气密度随高度分布规律的讨论[J]. 真空科学与技术学报, 2009, 29(S1): 1-8.

    Xue Datong. Studies of altitude distribution of earth′s atmosphere density[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(S1): 1-8.

[18] 郑文钢, 李洪钧, 杨国韬, 等. 武汉上空大气密度温度的激光雷达探测[J]. 大气科学, 1999, 23(4): 397-402.

    Zheng Wengang, Li Hongjun, Yang Guotao, et al. Lidar detection of the atmospheric density and temperature over Wuhan[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(4): 397-402.

[19] 陈 皓, 易 帆. 武汉上空对流层与平流层大气密度和温度探测的初步结果[J]. 空间科学学报, 2003, 23(4): 262-268.

    Chen Hao, Yi Fan. Rayleigh lidar and radiosonde observations of density and temperature in middle atmosphere over Wuhan[J]. Chinese Journal of Space Science, 2003, 23(4): 262-268.

[20] 邹 旭, 杨国韬, 王继红, 等. 基于激光雷达手段的海南地区重力波与其波谱的季节分布特性研究[J]. 地球物理学报, 2015, 58(7): 2274-2282.

    Zou Xu, Yang Guotao, Wang Jihong, et al. Gravity wave parameters and their seasonal variations derived from Na lidar observations at Hainan, China[J]. Chinese Journal of Geophysics, 2015, 58(7): 2274-2282.

沈吉, 曹念文. 米-拉曼散射激光雷达反演对流层气溶胶消光系数廓线[J]. 中国激光, 2017, 44(6): 0610003. Shen Ji, Cao Nianwen. Inversion of Tropospheric Aerosol Extinction Coefficient Profile by Mie-Raman Scattering Lidar[J]. Chinese Journal of Lasers, 2017, 44(6): 0610003.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!