作者单位
摘要
1 中山大学大气科学学院,广东 珠海 519000
2 中国矿业大学环境与测绘学院,江苏 徐州 221018
3 中国矿业大学碳中和研究院,江苏 徐州 221018
针对结合星地观测与模型定量模拟消光性气溶胶光学特性及黑碳质量空间分布这一热点问题,利用TROPOMI卫星紫外波段观测数据与AERONET地基观测数据,基于“核-壳”假设下的米散射模型提出了一种准确量化黑碳气溶胶质量空间分布的模拟方法,并对北京、香港、首尔三个站点的模拟结果进行分析与验证。多源数据约束后米散射模型模拟得到的结果显示:北京的吸收系数在0.04~0.13之间,香港的吸收系数整体小于0.08,首尔的吸收系数介于0.02~0.06之间。计算得到的黑碳气溶胶柱内质量空间分布结果显示:北京站黑碳气溶胶柱内质量在200~600 kg/grid之间,香港站黑碳气溶胶柱内质量在180~650 kg/grid之间,首尔站黑碳气溶胶柱内质量在300 kg/grid以下。结合卡尔曼滤波排放清单与一阶箱模型对黑碳气溶胶柱内质量结果进行间接验证,计算得到的黑碳气溶胶生命周期为1~4 d不等,符合其在大气中的真实状态,说明结果具有一定可靠性。通过对比加入TROPOMI紫外波段卫星观测数据前后对模型进行约束得到的粒径分布及吸收系数结果的差异发现:加入紫外波段观测数据对模拟结果具有一定增强作用。所提方法模拟结果良好,方案具有一定应用潜力。
TROPOMI卫星数据 AERONET 黑碳气溶胶 米散射模型 
光学学报
2024, 44(6): 0628002
沈法华 1,2徐菁苑 1,2范安冬 1,2谢晨波 3[ ... ]徐华 1,2
作者单位
摘要
1 盐城师范学院 物理与电子工程学院 江苏省智能光电器件与测控工程研究中心,江苏 盐城 224007
2 江苏省大气探测激光雷达技术军民融合创新平台,江苏 盐城 224007
3 中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽 合肥 230031
提出了基于双法布里-珀罗干涉仪(FPI)的多纵模米散射多普勒激光雷达技术,分析了探测原理,并导出了径向风速和后向散射比测量误差公式。该技术要求多纵模激光源的纵模间隔与双FPI的自由谱间距相匹配,并将各纵模的中心频率锁定在双FPI周期性频谱曲线的交叉点附近。详细分析了频率匹配误差引起的风速测量误差。在低风速区域,由频率匹配误差造成的风速测量误差增加的百分数EV随匹配误差的增大而迅速增大;频率匹配误差不变时,EV随风速增大而缓慢减小;当频率匹配误差小于10 MHz时,EV将小于5%。设定合理的大气模式和系统参数,对基于双FPI的多纵模米散射多普勒激光雷达的探测性能进行了仿真分析。结果表明:在0~10 km高度、0~50 m/s的径向风速范围内,当距离分辨率为30 m、时间分辨率为30 s、激光发射天顶角为30°时,系统白天和晚间的径向风速测量精度分别优于1.50 m/s和1.02 m/s;在无云条件下,系统白天和晚间的后向散射比相对测量精度分别优于6.57%和4.53%。
激光雷达 大气风场 多纵模脉冲激光 法布里-珀罗干涉仪 米散射 lidar atmospheric wind multi-mode pulse laser Fabry-Perot interferometer Mie scattering 
红外与激光工程
2023, 52(7): 20220762
作者单位
摘要
江西农业大学工学院, 江西 南昌 330045
以色散偏振光谱检测技术为背景, 着重研究了乳化油颗粒的偏振光学特性及米散射物理模型, 构建了色散偏振度光谱检测系统。 在400~700 nm波长范围内, 分别对四种样品进行了301个波段的光谱反射率采集。 结合贝塞尔函数和汉克尔函数, 推导出了入射光波长与散射光偏振振幅矢量的关系, 提取了一个新的特征参数: 色散偏振度(DODP)。 在暗室条件下, 对乳化油样品ND18和ND75进行测量, 利用色散偏振公式计算出了样品在各测量波长处的偏振度值, 验证了基于DODP值检测乳化油的可行性。 研究发现, 虽然米散射的解是由单个球体的衍射推导而来, 但是只要它们的直径和组成相同, 且彼此之间的距离比波长大, 也同样可以用于任意数量的球的衍射。 在这种情况下, 被不同球体散射的光之间没有相干的相位关系, 总散射能量等于被一个球体散射的能量乘以它们的整数。 当观测平面与入射波电矢量振动方向之间的夹角ϕ=0或者ϕ=π/2时, 散射光分量Eθ(s)或者Eϕ(s)消失。 由于ND18的粒径比ND75的粒径小, 所以ND18的前向散射波瓣较大, 前向散射与后向散射的比值较小。 在相同光照条件下, ND75的多次散射现象要比ND18严重。 根据路径相关矩阵的理论, 多次散射容易引起退偏振, 二次辐射波会在角域内扩散和分布。 因此, 被测乳化油表面产生的散射次数与入射光能的阻尼能力成正比。 由于乳化油表面入射光的能量耗散存在差异, 因此能量耗散率与入射波矢量方向的前向散射振幅的分量成正比, 且乳化油的偏振散射程度不同于入射光的偏振散射程度。 实验结果表明, DODP可以反映出乳化油由多次色散引起的去偏振能力。 由于模拟光源是自然光, 所以计算散射光的偏振参数非常方便, 可以大大缩短数据处理时间, 减小实验误差。 DODP不仅能够识别海水中的乳化油, 而且能够区分不同浓度的污染物, 准确识别出乳化油的边缘扩散。
偏振振幅矢量 乳化油 色散偏振度 米散射 路径相干矩阵 Polarization amplitude vector Emulsified oil Degree of dispersion polarization Mie scattering Path coherence matrix 
光谱学与光谱分析
2022, 42(9): 2689
作者单位
摘要
大连理工大学机械工程学院,辽宁 大连 116086

自然界中许多生物进化出利用天空偏振光进行导航的能力。天空光中紫外波段的能量和偏振度远低于可见光波段,一些生物却选择紫外波段进行导航,这被称为“生物偏振导航紫外悖论”。为了探究紫外波段天空光偏振优势,首先基于米散射理论分析了单粒子散射规律,然后采用蒙特卡罗法研究了云层的光传输特性,最后完成全天空偏振模式的仿真。仿真结果表明:紫外波段穿透云层散射介质后具有更高的偏振保持性,在多云阴天等不利天气条件下仍可利用紫外波段完成导航。从理论上分析了紫外波段在天空偏振导航中具备优势的原因,对仿生偏振导航目标波段的选取具有一定指导意义。

大气光学 偏振导航 米散射 蒙特卡罗法 全天空偏振模式 偏振保持性 
激光与光电子学进展
2021, 58(17): 1701001
作者单位
摘要
1 中国海洋大学 信息科学与工程学部 海洋技术学院,山东 青岛 266100
2 青岛海洋科学与技术国家实验室 区域海洋动力学与数值模拟功能实验室,山东 青岛 266237
3 齐鲁工业大学(山东省科学院) 山东省科学院海洋仪器仪表研究所,山东 青岛 266071
针对目前国内外现有的体积散射函数测量系统在后向小角度散射测量上的局限性,提出了基于离轴反射式光路的近180°水体体积散射函数测量方法并研发了实验室测量系统。系统采用离轴抛物面反射镜,将后向小角度散射光和入射激光分离,减小了系统后向小角度散射的测量盲区,而且能够获取全方位角的后向小角度散射光信号。选取聚苯乙烯标准粒子用于测量系统定标检验,结果表明,定标后的测量系统能够完成在173°~179.4°范围内水中悬浮颗粒物体积散射函数的测量,角度分辨率为0.01°。经对比分析,体积散射函数测量值与米散射理论值具有很好的一致性,验证了系统测量近180°水体体积散射函数的准确性和可行性。
后向小角度散射测量 体积散射函数 悬浮颗粒物 米散射 measurement of backscattering at small angle volume scattering function suspended particles Mie scattering 
红外与激光工程
2021, 50(6): 20211029
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院,上海 200093
2 上海犀锐仪器仪表有限公司,上海 201803
3 航天恒星科技有限公司,北京 100095
设计了一种基于米散射激光雷达的大气气溶胶检测系统。依据米散射激光雷达的原理,研究了激光光束与大气气溶胶的相互作用,设计并搭建了米散射激光雷达大气气溶胶检测实验平台,利用Zemax设计了一套具有滤波聚焦功能的光学望远系统。通过对光束进行扩束并利用可调谐式固定装置来增强回波信号强度。实验结果表明,设计的系统具有高的回波信号强度和低的杂散光干扰,能获得超高信噪比的激光回波信号。由此大大降低了后续算法的难度,使测得的气溶胶数据更加准确。
米散射 激光雷达 大气气溶胶 光学系统 信号检测 Mie scattering lidar atmospheric aerosol optical system signal detection 
光学仪器
2021, 43(2): 66
沈法华 1庄鹏 2,3,4王邦新 2,3,4谢晨波 2,3,*[ ... ]王英俭 2,3
作者单位
摘要
1 盐城师范学院物理与电子工程学院江苏省智能光电器件与测控工程研究中心, 江苏 盐城 224002
2 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
3 先进激光技术安徽省实验室, 安徽 合肥 230037
4 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
分析了传统瑞利-米散射多普勒激光雷达在低层风场中的风速反演误差,结果表明,该激光雷达在±50 m/s风速范围,3 km高度下的风速反演误差达到4~5 m/s。因此,基于S6瑞利-布里渊散射模型,提出了一种基于瑞利-米散射多普勒激光雷达数据反演低层风场和气溶胶后向散射比的方法。仿真结果表明,本方法可以同时反演出风速和气溶胶后向散射比,且精度较高。实测风场反演结果表明,相比传统方法,本方法得到的水平风速廓线与探空气球法得到的结果吻合度较高,在6 km高度下尤为明显,验证了本方法在低层风场反演中的优势。
遥感 多普勒激光雷达 Fabry-Perot干涉仪 瑞利-米散射 
中国激光
2021, 48(11): 1110005
庄鹏 1,2沈法华 3,*王邦新 1,2,4谢晨波 1,2,4[ ... ]王英俭 1,2,4
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 盐城师范学院物理与电子工程学院, 江苏省智能光电器件与测控工程研究中心, 江苏 盐城 224002
4 先进激光技术安徽省实验室, 安徽 合肥 230037
为了研制探测中高层风场的瑞利-米散射多普勒激光雷达系统,前期在实验室搭建了一套基于三通道法布里-珀罗干涉仪(FPI)的532 nm瑞利-米多普勒激光雷达验证系统,并进行实际比对实验。利用验证系统,首先开展了FPI透过率校准实验,采用非线性拟合方法获得了三个通道FPI实际透过率曲线,FPI-1、FPI-2和FPI-L的谱宽分别为1.20 GHz、1.22 GHz、1.18 GHz,峰值透过率分别为0.817、0.807、0.768,FPI-1和FPI-2及FPI-1和FPI-L的峰峰间隔分别为3.91 GHz和1.25 GHz,并进一步给出了米散射和瑞利散射信号入射时系统实际的风速探测灵敏度。其次,开展了径向风速连续观测实验和水平风场对比观测实验。实验结果表明:在单次径向风速测量中,时空分辨率为2 min和75 m的情况下,系统白天和晚间分别具备10 km和16 km左右高度的风场探测能力。在白天2.7~10 km、晚间1.5~10 km高度范围内,系统测得的水平风场数据与探空气球测得的水平风场数据吻合度较高,晚间70.8%的水平风速和风向数据偏差小于2 m/s和10°;95%的水平风速和风向数据偏差小于5 m/s和15°,充分验证了系统风场测量结果的准确性。
遥感 多普勒激光雷达 大气风速测量 法布里-珀罗干涉仪 瑞利-米散射 
中国激光
2020, 47(12): 1210001
作者单位
摘要
齐鲁工业大学(山东省科学院),山东省科学院海洋仪器仪表研究所, 山东 青岛 266001
根据米散射理论,设计了以532 nm激光器为光源、CCD为探测器的极化浊度计。对粒径为2 μm的聚苯乙烯标准粒子(PSL)进行检测,得到了PSL的散射相函数,将其与偏振角为0°和90°的2 μm球形粒子的理论散射相函数进行对比,拟合度分别达到87.3%与88.4%。采用Chahine迭代算法反演得到PSL的粒径为1.94 μm,接近其真实值。将极化浊度计与宽范围颗粒粒径谱仪和扫描电镜的检测结果进行对比,结果表明,该装置检测精度高,且不受人为主观因素影响,对颗粒粒径的准确检测有重要意义,在相关领域应用前景较好。
颗粒粒径 电荷耦合器 米散射 散射相函数 
激光与光电子学进展
2020, 57(9): 092902
作者单位
摘要
1 浙江大学 海洋学院, 浙江 舟山 316021
2 自然资源部第二海洋研究所 卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012
针对现有体散射测量系统中激光器与探测器相互遮挡导致探测角度减小的问题, 设计了一款新型的水中颗粒物的体散射函数测量系统。首先, 通过双潜望式光路结构, 将激光发生平面与散射探测平面分离, 减小了激光器对探测角度的遮挡; 同时, 通过潜望式出射棱镜将透射光导出水体, 避免了容器的杯壁散射, 提高背散射测量的准确性。根据实际工艺, 改进出射棱镜, 设计系统样机, 实现了3°~178°大角度范围体散射函数的测量。结合系统结构与水下光传输原理, 根据数据矫正算法, 矫正由于测量光程及水体衰减造成的偏差。对比矫正后结果与米散射仿真结果, 证明方法的可靠性。
大角度范围散射测量 水中颗粒 体散射函数 米散射 wide angle range scattering measurement particles in water volume scattering function Mie scattering 
红外与激光工程
2020, 49(2): 0203011

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!