作者单位
摘要
1 江西农业大学软件学院, 江西 南昌 330045 江西农业大学工学院, 江西 南昌 330045
2 江西农业大学工学院, 江西 南昌 330045
3 江西农业大学工学院, 江西 南昌 330045江西省现代农业装备重点实验室, 江西 南昌 330045
近年来, 猪饲料重金属超标问题屡禁不止, 严重危害食用人群健康与环境安全。 国家标准中所采用的干灰化-原子吸收光谱法存在耗时长、 需破坏样品、 试剂易造成环境污染等问题。 激光诱导击穿光谱(LIBS)以其快速、 近乎无损、 无需复杂制样的检测特性被誉为化学分析领域的“未来巨星”。 传统LIBS技术在应用于猪饲料安全品质检测时具有特征光谱强度弱, 检测精度较低等缺陷, 针对该缺陷, 提出LIBS技术与空间限域相结合, 采用空间限域方法提高分析谱线强度, 从而实现更低浓度样品的检出, 实现对猪饲料样品中Cu元素含量进行快速绿色检测。 以Cu Ⅰ 324.75 nm为分析谱线, 在优化后的能量下, 对比不同延时时间下加载不同高度和直径的圆柱形空间限域腔对分析谱线影响, 再选取对分析谱线整体增强效果最佳的空间限域腔对7组不同浓度猪饲料样品进行LIBS光谱采集, 结合采用国家标准方法获取的7组猪饲料样品中Cu元素参考浓度对LIBS系统检测灵敏度进行分析。 结果表明, 加载空间限域腔对分析谱线强度引起增强的同时不会对背景光谱造成明显影响, 分析谱线强度增强因子最大值为5.16, 空间限域腔直径为5.0 mm、 高度为2.0 mm情况下对分析谱线整体增强效果最佳。 在上述最佳试验参数基础上, 以Cu元素在324.75 nm处特征光谱峰值强度为参考, 对猪饲料进行定量分析。 结果发现加载空间限域腔后不同浓度下猪饲料样品中Cu元素浓度与分析谱线强度之间线性关系相较于传统LIBS提升明显, 其单变量定标模型R2从0.742提升至0.996, 检测限从6.21 mg·kg-1降低至1.61 mg·kg-1(《饲料添加安全使用规范》中猪类Cu元素日粮推荐含量为3~6 mg·kg-1), 检测灵敏度提高了2.86倍。 研究表明, 采用空间限域与LIBS技术相结合, 可以大幅提升系统检测精度与灵敏度, 使待测元素检测限降低至国家要求以下, 对于实现猪饲料中Cu元素含量较低样品的LIBS快速绿色检测具有较好的作用。
激光诱导击穿光谱 空间限域 猪饲料  检测灵敏度 Laser-induced breakdown spectroscopy Cavity-confinement Pig fodder Copper Detection sensitivity 
光谱学与光谱分析
2023, 43(6): 1770
黄梦琴 1吴书佳 1姚明印 1,2刘子昊 1[ ... ]黎静 1,2,*
作者单位
摘要
1 江西农业大学工学院,江西 南昌 330045
2 江西省现代农业装备重点实验室,江西 南昌 330045
为提高激光诱导击穿光谱(LIBS)技术对猪饲料中重金属的定量分析精度,以市场常见猪饲料中的Cu元素为研究对象,采用偏最小二乘法(PLS)建立猪饲料中Cu元素定量分析模型,结合空间限域提高LIBS信号强度及定量模型精度,实验所用空间限域腔内腔直径和高度分别为4.5 mm和2 mm。采用九点平滑、标准正态变量变换、多元散射校正等方法对60组猪饲料样品的LIBS进行光谱预处理,并建立PLS预测模型。结果显示,基于圆柱形空间限域,利用九点平滑结合多元散射校正预处理效果最好。传统LIBS条件下预测集相关系数(R)为0.8684,预测均方根误差(RMSEP)为49.3,预测集平均相对误差(ARE)为43.95%;结合空间限域LIBS条件下R为0.9881,RMSEP为14.4,ARE为12.51%。研究结果表明,外加空间限域的LIBS技术能够明显提高猪饲料中Cu元素的光谱信号强度及PLS模型的精度,为猪饲料的精准安全检测提供较好的支持作用。
光谱学 激光诱导击穿光谱 猪饲料 空间限域 偏最小二乘法 
激光与光电子学进展
2023, 60(7): 0730002
作者单位
摘要
江西农业大学工学院, 江西 南昌 330045
以色散偏振光谱检测技术为背景, 着重研究了乳化油颗粒的偏振光学特性及米散射物理模型, 构建了色散偏振度光谱检测系统。 在400~700 nm波长范围内, 分别对四种样品进行了301个波段的光谱反射率采集。 结合贝塞尔函数和汉克尔函数, 推导出了入射光波长与散射光偏振振幅矢量的关系, 提取了一个新的特征参数: 色散偏振度(DODP)。 在暗室条件下, 对乳化油样品ND18和ND75进行测量, 利用色散偏振公式计算出了样品在各测量波长处的偏振度值, 验证了基于DODP值检测乳化油的可行性。 研究发现, 虽然米散射的解是由单个球体的衍射推导而来, 但是只要它们的直径和组成相同, 且彼此之间的距离比波长大, 也同样可以用于任意数量的球的衍射。 在这种情况下, 被不同球体散射的光之间没有相干的相位关系, 总散射能量等于被一个球体散射的能量乘以它们的整数。 当观测平面与入射波电矢量振动方向之间的夹角ϕ=0或者ϕ=π/2时, 散射光分量Eθ(s)或者Eϕ(s)消失。 由于ND18的粒径比ND75的粒径小, 所以ND18的前向散射波瓣较大, 前向散射与后向散射的比值较小。 在相同光照条件下, ND75的多次散射现象要比ND18严重。 根据路径相关矩阵的理论, 多次散射容易引起退偏振, 二次辐射波会在角域内扩散和分布。 因此, 被测乳化油表面产生的散射次数与入射光能的阻尼能力成正比。 由于乳化油表面入射光的能量耗散存在差异, 因此能量耗散率与入射波矢量方向的前向散射振幅的分量成正比, 且乳化油的偏振散射程度不同于入射光的偏振散射程度。 实验结果表明, DODP可以反映出乳化油由多次色散引起的去偏振能力。 由于模拟光源是自然光, 所以计算散射光的偏振参数非常方便, 可以大大缩短数据处理时间, 减小实验误差。 DODP不仅能够识别海水中的乳化油, 而且能够区分不同浓度的污染物, 准确识别出乳化油的边缘扩散。
偏振振幅矢量 乳化油 色散偏振度 米散射 路径相干矩阵 Polarization amplitude vector Emulsified oil Degree of dispersion polarization Mie scattering Path coherence matrix 
光谱学与光谱分析
2022, 42(9): 2689
陈健 1刘木华 1,2袁海超 1,2黄双根 1,2[ ... ]胡围 1
作者单位
摘要
1 江西农业大学 工学院 江西省现代农业装备重点实验室,江西南昌330045
2 江西农业大学 工学院 江西省果蔬采后处理关键技术及 质量安全协同创新中心,江西南昌330045
采用同步荧光技术结合化学计量学实现了鸡肉中磺胺二甲基嘧啶(Sulfamethazine,SM2)和氧氟沙星(Ofloxacin,OFL)残留的快速检测。分析了SM2标准溶液、OFL标准溶液、空白鸡肉提取液和含SM2和OFL的鸡肉提取液的三维同步荧光光谱,确定了鸡肉中SM2和OFL残留检测的波长差(Δλ)分别为150 nm和210 nm,荧光激发峰分别为292.5 nm和295 nm。采用单因素实验考察了β-巯基乙醇和邻苯二甲醛溶液加入量及时间对荧光强度的影响,确定了最佳检测条件为:β-巯基乙醇溶液300 μL、邻苯二甲醛溶液25 μL和采集时间44 min。最后,利用峰高法和峰面积法分别建立了预测模型。实验结果表明,与基于峰面积法的预测模型相比,基于峰高法的预测模型的综合评价更好。基于峰高法的SM2和OFL残留预测模型的预测集决定系数(R2P)分别为0.897 3和0.997 3,预测集均方根误差(RMSEP)分别为6.060 5 mg/kg和0.539 2 mg/kg,回收率分别处于76.1%~115.2%和96.7%~110.1%之间,相对标准偏差(RSD)分别处于2.7%~7.0%和2.8%~10.0%之间。本方法快速、简便,可用于鸡肉中SM2和OFL残留的快速检测。
光谱检测 同步荧光光谱法 鸡肉 磺胺二甲基嘧啶 氧氟沙星 回归分析 spectral detection synchronous fluorescence spectrometry chicken sulfamethazine ofloxacin regression analysis 
光学 精密工程
2021, 29(4): 721
陈健 1黄俊仕 1,2刘木华 1,2袁海超 1,2[ ... ]胡围 1
作者单位
摘要
1 江西农业大学, 江西省现代农业装备重点实验室, 江西 南昌 330045
2 江西农业大学, 江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 330045
采用同步荧光技术结合化学计量学方法实现了鸡肉中甲磺酸达氟沙星(DFM)和氧氟沙星(OFL)残留的快速检测。 首先, 分析了DFM标准溶液、 OFL标准溶液、 空白鸡肉提取液和含DFM和OFL的鸡肉提取液的同步荧光光谱, 确定了鸡肉中DFM和OFL残留的检测波长差(Δλ)分别为130和200 nm, 荧光激发峰分别为288和325 nm。 其次, 采用单因素试验考察了氢氧化钠溶液浓度和表面活性剂种类对荧光强度的影响, 确定了鸡肉中DFM和OFL残留的最佳检测条件为: 氢氧化钠溶液浓度0.1 mol·L-1和SDS溶液浓度0.1 mol·L-1。 最后, 利用线性回归和偏最小二乘回归(PLSR)及多元线性回归(MLR)算法分别建立了鸡肉中DFM和OFL残留的预测模型。 试验结果表明, 与基于线性回归和MLR的DFM残留预测模型相比, 基于PLSR的DFM残留预测模型的综合评价更好, 其预测集决定系数(R2P)为0.978 3, 预测集均方根误差(RMSEP)为1.934 2 mg·kg-1, 相对预测误差(RPD)为5.876 5。 与基于线性回归和PLSR的OFL残留预测模型相比, 基于MLR的OFL残留预测模型的综合评价更好, 其R2P为0.895 0, RMSEP为3.859 8 mg·kg-1, RPD为2.509 1。 该方法操作简单、 耗时短, 可用于鸡肉中DFM和OFL残留的快速检测。
同步荧光光谱法 鸡肉 甲磺酸达氟沙星 氧氟沙星 回归分析 Synchronous fluorescence spectrometry Chicken Danofloxacin mesylate Ofloxacin Regression analysis 
光谱学与光谱分析
2021, 41(5): 1367
徐宁 1,2刘木华 1,2袁海超 1,2黄双根 1,2[ ... ]宋怡欣 1,2
作者单位
摘要
1 江西农业大学工学院/生物光电及应用重点试验室, 江西 南昌 330045
2 江西省果蔬菜后处理关键技术与质量安全协同创新中心, 江西 南昌 330045
以金溶胶作为活性基底, 浓度为1%的NaCl溶液作为活性剂, 利用DXRTM显微拉曼光谱仪采集鸡肉的表面增强拉曼光谱(SERS), 实现快速鉴别鸡肉中残留的磺胺二甲基嘧啶(SM-2)和磺胺吡啶(SPD)两种抗生素。 用937和1 188 cm-1处是否有拉曼特征峰来判别鸡肉中是否残留SPD和SM-2。 采用单因素实验方法, 根据937和1 188 cm-1处的特征SERS强度, 对试验条件进行优化, 得到最佳试验条件: 金溶胶加入量为500 μL、 NaCl溶液加入量为100 μL和吸附时间为5 min, 所选用的金溶胶柠檬酸钠加入量3.7 mL。 根据测试集鸡肉中残留的SM-2和SPD的分类精度确定研究用自适应迭代惩罚最小二乘法(air-PLS)、 归一化和二阶导数作为原始拉曼光谱的预处理方法, 然后用主成分分析(PCA)提取特征向量, 最后以前四个PCA得分值作为支持向量机(SVM)分类模型的输入值, 建立基于C-SVC类型的SVM分类模型。 其中, 最优惩罚参数c为0.01、 核参数g为0.1。 此分类模型对测试集的整体分类精度达到93.23%。 对测试集的敏感性和特异性进行计算, 敏感性的范围为77.42%~100%, 特异性的范围为96%~99.02%, 其中, 含SM-2+SPD鸡肉的敏感性最高为100%, 含SPD鸡肉的特异性最高为99.02%。 试验结果表明, 该方法具有良好的鉴别效果, 可用于实现对鸡肉中SM-2和SPD两种抗生素残留的快速检测和鉴别。
表面增强拉曼光谱 磺胺二甲基嘧啶 磺胺吡啶 分类鉴别 主成分分析 支持向量机 Surface-enhanced Raman spectroscopy Sulfamethazine Sulfapyridine Identification Principal component analysis Support vector machine 
光谱学与光谱分析
2021, 41(3): 924
黎静 1,2,3伍臣鹏 1刘木华 1,2,3陈金印 3[ ... ]薛龙 1,2,*
作者单位
摘要
1 江西农业大学工学院, 江西 南昌 330045
2 江西省现代农业装备重点实验室, 江西 南昌 330045
3 江西省果蔬采后处理关键技术与质量安全协同创新中心, 江西 南昌 330045
猕猴桃形状特征是猕猴桃在产后分级处理过程的一项重要指标, 不仅影响果实外观, 也决定果实等级高低的划分。 传统的形状分级方法大多采用人工分级, 存在耗时长、 效率低、 重复性差且易受人为主观影响等问题。 针对传统猕猴桃形状分级存在的问题, 研究利用高光谱成像建立猕猴桃正常果和畸形果的分类检测方法。 以成熟期的248个金魁猕猴桃(正常果107个, 畸形果141个)作为研究样本, 先利用可见-近红外高光谱成像系统采集猕猴桃样本的光谱数据, 再采用主成分分析法对光谱数据进行降维, 得到第一主成分图像。 随后提取第一主成分图像的3个特征波长(682, 809和858 nm), 并对其进行融合计算, 生成新的光谱图像(融合图像)。 然后利用四叉树分解算法对融合图像进行分割处理, 并计算掩膜图像所对应的12组形状特征参数, 结合偏最小二乘线性判别分析(PLS-LDA)、 反向传播神经网络(BPNN)、 最小二乘支持向量机(LSSVM)建立判别模型, 对比分析, 最终得到猕猴桃形状特征的最佳分类模型。 结果表明, 所建立的三种分类模型中, BPNN和LSSVM模型的分类效果较好, 总体分类准确率均在95%以上; PLS-LDA的效果略差, 训练集和测试集的总体准确率分别为80.12%和76.83%。 其中BPNN模型训练集和测试集的总体分类准确率分别为98.19%和97.56%, 总体误判个数分别为3和2, 而LSSVM模型的总体准确率分别为97.59%和95.12%, 总体误判个数分别为4和4。 对猕猴桃正常果的检测, 三种模型的分类效果分别为: LSSVM最好、 BPNN其次、 PLS-LDA最差。 对猕猴桃畸形果的检测, 三种模型的分类效果分别为: BPNN最优、 LSSVM其次, PLS-LDA效果最差。 因此, 猕猴桃形状特征的最佳分类模型是BPNN模型。 试验结果说明, 可利用高光谱成像对猕猴桃形状特征进行分类判别。 为猕猴桃形状特征的快速、 准确无损检测研究提供了理论支持。
高光谱成像技术 形状特征 分类 Hyperspectral imaging technique Shape characteristics Classification 
光谱学与光谱分析
2020, 40(8): 2564
章琳颖 1,2黎静 1,2饶洪辉 1,2周华茂 1,2[ ... ]姚明印 1,2,*
作者单位
摘要
1 江西农业大学工学院, 江西 南昌330045
2 江西省现代农业装备重点实验室, 江西 南昌 330045
3 江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 330045
运用激光诱导击穿光谱(LIBS)技术对赣南脐橙橙汁进行了快速绿色鉴别。实验分别测定了健康和黄龙病脐橙果汁的糖度及Ca、K、Zn元素含量,并分析了糖度及元素含量差异。采集了脐橙果汁的LIBS光谱数据,运用九点平滑(9SM)法并结合多元散射校正(MSC)对数据进行了预处理,最后运用主成分分析(PCA)法并结合多层感知器(MLP)神经网络和径向基函数(RBF)神经网络模型对健康和黄龙病脐橙进行了快速判别。结果表明,PCA-MLP模型对健康和黄龙病脐橙的判别效果优于PCA-RBF模型,其训练集对健康脐橙和黄龙病脐橙的判别准确率分别为93.8%和93.4%,预测集对健康脐橙和黄龙病脐橙的判别准确率分别为93.9%和94.8%。LIBS检测结果证明了黄龙病导致脐橙果肉品质发生了变化;进一步利用光谱预处理方法和分类模型,从品质上区分了黄龙病脐橙果汁和健康脐橙果汁,提高了出厂橙汁的产品合格率。
光谱学 激光诱导击穿光谱 黄龙病脐橙 快速判别 主成分分析 
激光与光电子学进展
2020, 57(23): 233002
黄双根 1,2,*王晓 1,2吴燕 2,3刘木华 1,2
作者单位
摘要
1 江西省果蔬采后处理关键技术与质量安全协同创新中心, 江西 南昌 330045
2 江西农业大学现代农业装备重点实验室, 江西 南昌 330045
3 江西农业大学计算机信息与工程学院, 江西 南昌 330045
西维因是一种广谱、 高效的氨基甲酸酯杀虫剂。 提出一个基于表面增强拉曼光谱进行定量和定性分析小白菜中西维因残留的方法。 密度泛函理论B3LYP/6-311G基组被用于计算西维因农药的理论拉曼光谱。 硫酸镁、 PSA、 石墨化炭黑和C18被用来去除叶绿素、 矿物质和维生素等物质的影响。 采用MSC, SNV和归一化三种方法对原始光谱进行预处理, 建立小白菜中西维因残留的偏最小二乘模型。 研究表明, 小白菜中西维因农药残留检测可以达到0.976 mg·L-1以下。 经MSC预处理后所建PLS模型预测性能最好, 当主成分数为9时所建模型的性能最好, Rc为0.977, RMSECV为2.09 mg·L-1, Rp为0.986 5, RMSEP为1.71 mg·L-1。 五个未知西维因农药浓度小白菜样本用来验证模型的准确度, 相对误差为1.98%~7.28%, 预测回收率为95.73%~107.28%, T值为0.397, 小于t0.05, 4=2.776, 说明模型是准确可靠的。 SERS方法是一种有效的方法, 可以实现小白菜中西维因农药残留的快速可靠检测。
小白菜 西维因 密度泛函理论 表面增强拉曼光谱 偏最小二乘 快速检测 Pakchoi Carbaryl Density functional theory (DFT) SERS PLS Rapid detection 
光谱学与光谱分析
2019, 39(1): 130
甘兰萍 1,2,*孙通 1,2刘津 1,2刘木华 1,2
作者单位
摘要
1 江西农业大学工学院, 江西省高校生物光电技术及应用重点实验室
2 江西省果蔬 采后处理关键技术及质量安全协同创新中心, 江西 南昌 330045
腐霉利(Procymidone) 作为一种新型的农产品杀菌剂, 具有防止农产品受病虫害的作用, 但其在施药过程中容易使用不当危害环境和人的健康。 为加强对腐霉利农药的检测, 本研究应用共轴双脉冲激光诱导击穿光谱技术(LIBS) 对溶液中的腐霉利含量进行定量检测研究。 为配置不同浓度的腐霉利样品, 将有效成分含量为98%腐霉利粉末与二甲苯按照不同比例混合并完全溶解。 由于液体样品在激光击打的过程中容易将液体溅出, 具有一定的危险性。 因此, 实验将液体样品转化为固体样品, 利用石墨吸附腐霉利溶液, 然后采用八通道高精度光谱仪采集样品的LIBS光谱, 并利用不同预处理方法对光谱数据进行预处理。 为提高腐霉利的检测精度, 选择氯元素信号最强的两通道(744.555~935.843, 893.107~1 057.058 nm) 光谱数据, 分别采用归一化函数(normalization) 、 基线校正(baseline correction) 、 标准正态变量变换(SNV) 、 多元散射校正(MSC) 方法进行光谱预处理, 并应用PLS方法建模。 通过比较各预处理方法数据后, 综合考虑, 选择Baseline方法为最佳预处理方法。 在baseline预处理方法的基础上使用无信息变量消除算法(UVE) 联合竞争性自适应重加权采样(CARS)算法剔除无信息的波长变量, 筛选与腐霉利相关的重要波长变量, 最后应用偏最小二乘回归建立溶液中腐霉利含量的定量预测模型。 建模结果表明: 经光谱预处理和UVE-CARS方法优选后, 可将原4096个波长变量个数减少至13个, 变量压缩率为99.68%; 经UVE-CARS变量优选后建立的PLS模型的校正集的决定系数和均方根误差分别为0.990 5和0.66, 预测集的决定系数和均方根误差分别为0.990 3和0.67, 其模型性能优于原始光谱建立的PLS模型。 结果表明, 利用共轴双脉冲LIBS技术定量检测溶液中的腐霉利含量具有一定的可行性, 经UVE和CARS方法筛选后可以有效提取腐霉利的特征变量及相关影响变量, 剔除冗余及噪声影响变量, 简化定量分析模型且提高了定量分析模型的稳定性。
光谱学 激光诱导击穿光谱 腐霉利 竞争性自适应重加权采样 无信息变量消除算法 Spectroscopy Laser induced breakdown spectroscopy Procymidone Competitive adaptive re-weighted sampling Uninformed variable elimination 
光谱学与光谱分析
2019, 39(2): 584

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!