中国激光, 2018, 45 (2): 0207019, 网络出版: 2018-02-28   

光学相干层析技术在血管流场检测方面的研究进展 下载: 1600次特邀综述

Research Progress on Optical Coherence Tomography in Detecting Vascular Flow Field
作者单位
中国科学院苏州生物医学工程技术研究所, 江苏 苏州 215163
引用该论文

高峰, 樊金宇, 孔文, 史国华. 光学相干层析技术在血管流场检测方面的研究进展[J]. 中国激光, 2018, 45(2): 0207019.

Gao Feng, Fan Jinyu, Kong Wen, Shi Guohua. Research Progress on Optical Coherence Tomography in Detecting Vascular Flow Field[J]. Chinese Journal of Lasers, 2018, 45(2): 0207019.

参考文献

[1] Lexer F, Hitzenberger C K, Fercher A F, et al. Wavelength-tuning interferometry of intraocular distances[J]. Applied Optics, 1997, 36(25): 6548-6553.

[2] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 1997, 22(5): 340-342.

[3] Yun S H, Boudoux C, Tearney G J, et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 2003, 28(20): 1981-1983.

[4] Klein T, Wieser W, Reznicek L, et al. Multi-MHz retinal OCT[J]. Biomedical Optics Express, 2013, 4(10): 1890-1908.

[5] Zhao Y, Chen Z, Saxer C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2): 114-116.

[6] Zhao Y, Chen Z, Saxer C, et al. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow[J]. Optics Letters, 2000, 25(18): 1358-1360.

[7] Liu G, Chou L, Jia W, et al. Intensity-based modified Doppler variance algorithm dedicated for phase instable optical coherence tomography systems[J]. Optics Express, 2011, 19(12): 11429-11440.

[8] Wang R K, Jacques S L, Ma Z, et al. Three dimensional optical angiography[J]. Optics Express, 2007, 15(7): 4083-4097.

[9] Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

[10] Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

[11] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1/2): 43-48.

[12] Zhang A, Xi J, Liang W, et al. Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images[J]. Optics Letters, 2014, 39(15): 4392-4395.

[13] Liu G, Lin A J, Tromberg B J, et al. A comparison of Doppler optical coherence tomography methods[J]. Biomedical Optics Express, 2012, 3(10): 2669-2680.

[14] Szkulmowska A, Szkulmowski M, Kowalczyk A, et al. Phase-resolved Doppler optical coherence tomography-limitations and improvements[J]. Optics Letters, 2008, 33(13): 1425-1427.

[15] Hendargo H C, Mcnabb R P, Dhalla A H, et al. Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography[J]. Biomedical Optics Express, 2011, 2(8): 2175-2188.

[16] Baumann B, Potsaid B, Kraus M F, et al. Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT[J]. Biomedical Optics Express, 2011, 2(6): 1539-1552.

[17] Ren H, Brecke K M, Ding Z, et al. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography[J]. Optics Letters, 2002, 27(6): 409-411.

[18] Wang L, Wang Y, Guo S, et al. Frequency domain phase-resolved optical Doppler and Doppler variance tomography[J]. Optics Communications, 2004, 242(4/5/6): 345-350.

[19] Lee K K C, Mariampillai A, Yu J X Z, et al. . Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit[J]. Biomedical Optics Express, 2012, 3(7): 1557-1564.

[20] Sudbeendran N, Syed S H, Dickinson M E, et al. Speckle variance OCT imaging of the vasculature in live mammalian embryos[J]. Laser Physics Letters, 2015, 8(3): 247-252.

[21] Wei E, Jia Y, Tan O, et al. Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography[J]. PLoS One, 2013, 8(12): e81343.

[22] 王倩, 魏文斌. 分频幅去相干血管成像[J]. 国际眼科纵览, 2016, 40(2): 112-116.

    Wang Q, Wei W B. Optical cohenrence tomography with split-spectrum amplitude decorrelation angiography[J]. International Review of Ophthalmology, 2016, 40(2): 112-116.

[23] Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[J]. Ophthalmology, 2014, 121(7): 1322-1332.

[24] Liu L, Jia Y, Takusagawa H L, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052.

[25] Baumann B, Pircher M, Götzinger E, et al. Full range complex spectral domain optical coherence tomography without additional phase shifters[J]. Optics Express, 2007, 15(20): 13375-13387.

[26] An L, Wang R K. Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography[J]. Optics Letters, 2007, 32(23): 3423-3425.

[27] Leitgeb R A, Michaely R, Lasser T, et al. Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning[J]. Optics Letters, 2007, 32(23): 3453-3455.

[28] Zhang A, Zhang Q, Chen C L, et al. Methods and algorithms for optical coherence tomography-based angiography: A review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.

[29] Wang R K, An L. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo[J]. Optics Express, 2009, 17(11): 8926-8940.

[30] Yun S H, Tearney G J. BOER J F D, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 2003, 11(22): 2953-2963.

[31] Liu G, Tan O, Gao S S, et al. Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography[J]. Optics Express, 2015, 23(8): 9824-9834.

[32] Vakoc B J, Yun S H. Boer J F D, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 2005, 13(14): 5483-5493.

[33] Zhang J, Chen Z. In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography[J]. Optics Express, 2005, 13(19): 7449-7457.

[34] 潘聪, 郭立, 沈毅, 等. 基于界面信号的扫频光学相干层析成像系统相位矫正方法[J]. 物理学报, 2016, 65(1): 014201.

    Pan C, Guo L, Shen Y, et al. Phase correction method based on interfacial signal in swept source optical coherence tomography[J]. Acta Physica Sinica, 2016, 65(1): 014201.

[35] Hong Y J, Makita S, Jaillon F, et al. High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization[J]. Optics Express, 2012, 20(3): 2740-2760.

[36] Braaf B, Vermeer K A. Sicam V A D P, et al. Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid[J]. Optics Express, 2011, 19(22): 20886-20903.

[37] 樊金宇, 高峰, 孔文, 等. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法[J]. 物理学报, 2017, 66(11): 114204.

    Fan J Y, Gao F, Kong W, et al. A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography[J]. Acta Physica Sinica, 2017, 66(11): 114204.

[38] Choi W, Potsaid B, Jayaraman V, et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source[J]. Optics Letters, 2013, 38(3): 338-340.

[39] Park B H, Pierce M C, Cense B, et al. Real-time fiber-based multi-functional spectral- domain optical coherence tomography at 1.3 μm[J]. Optics Express, 2005, 13(11): 3931-3944.

[40] Zhi Z W, Qin W, Wang J, et al. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source[J]. Optics Letters, 2015, 40(8): 1779-1782.

[41] An L, Qin J, Wang R K. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds[J]. Optics Express, 2010, 18(8): 8220-8228.

[42] Braaf B, Vermeer K A, Vienola K V, et al. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans[J]. Optics Express, 2012, 20(18): 20516-20534.

[43] Zhao Y H, Brecke K M, Ren H W, et al. Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(6): 1-5.

[44] LiuG, CheZ. Phase-resolved Doppler optical coherence tomography[M] //Optical Coherence Tomography. [S.l.]:[s.n.], 2012: 23- 25.

[45] An L, Wang R K. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography[J]. Optics Express, 2008, 16(15): 11438-11452.

[46] Fingler J, Zawadzki R J, Werner J S, et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 2009, 17(24): 22190-22200.

[47] Wang R K, Hurst S. Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 μm wavelength[J]. Optics Express, 2007, 15(18): 11402-11412.

[48] 丁志华, 陈明惠, 王凯, 等. 快速扫频光源及其在光学频域成像中的应用[J]. 中国激光, 2009, 36(10): 2469-2476.

    Ding Z H, Chen M H, Wang K, et al. High-speed swept source and its application in optical frequency-domain imaging[J]. Chinese Journal of Lasers, 2009, 36(10): 2469-2476.

[49] 陈明惠, 李昊, 范云平. 30 kHz窄瞬时线宽扫频激光光源的研制[J]. 中国激光, 2016, 43(4): 0416001.

    Chen M H, Li H, Fan Y P. Development of 30 kHz repetition rate swept laser source with narrow instataneous linewidth[J]. Chinese Journal of Lasers, 2016, 43(4): 0416001.

[50] Bonesi M, Minneman M P, Ensher J, et al. Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length[J]. Optics Express, 2014, 22(3): 2632-2655.

[51] Song S Z, Wei W, Hsieh B Y, et al. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate[J]. Applied Physics Letters, 2016, 108: 191104.

[52] 黄胜海, 吕帆, 沈梅晓, 等. 一种在体视网膜血流动力学的成像与绝对流速测量方法: CN105286779A[P].2016-02-03.

高峰, 樊金宇, 孔文, 史国华. 光学相干层析技术在血管流场检测方面的研究进展[J]. 中国激光, 2018, 45(2): 0207019. Gao Feng, Fan Jinyu, Kong Wen, Shi Guohua. Research Progress on Optical Coherence Tomography in Detecting Vascular Flow Field[J]. Chinese Journal of Lasers, 2018, 45(2): 0207019.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!