红外与激光工程, 2019, 48 (8): 0826002, 网络出版: 2019-09-03  

基于分数阶微分的Kinect传感器深度图像阴影检测方法

Shadow detection for depth image of Kinect sensor based on fractional differential
作者单位
1 西安理工大学 计算机科学与工程学院, 陕西 西安 710048
2 西安理工大学 信息技术与装备工程学院, 陕西 西安 710048
摘要
深度图像作为Kinect传感器的重要组成部分, 其获得的深度图像往往伴随着不可避免和无法预知的阴影噪声, 这也极大地影响并制约其在三维可视化等方面的应用及研究。因此, 针对深度图像提出了一种基于分数阶微分的阴影检测方法。在研究分数阶微分定义的Tiansi模板基础上, 设计并实现了一种非线性拉伸算子。该算子在0.6阶次可以增强阴影区域边界信息的同时实现阴影的有效检测。通过分析比较发现, 该方法在F测度的评价体系中可以达到0.971, 而其他传统的检测方法均小于0.7。实验结果证明文中提出方法可以有效实现深度图像的阴影检测。
Abstract
As an essential component of the Kinect sensor, depth image always contains inevitable and unpredictable shadow noises which limit their usability in many 3D vision applications. Therefore, a shadow detection method based on fractional differential was proposed for depth image. Based on the study of Tiansi template defined by fractional differential, a non-linear stretching operator was designed and implemented. This operator can enhance the boundaries information of shadow regions significantly and accomplish the shadow detection effectively at 0.6 order. Compared with other traditional methods, the proposed method can reach up to 0.971 for F-measure, while the other methods were all less than 0.7. The experimental results indicate that the new method can detect shadow noises effectively.
参考文献

[1] Naeemabadi M Reza, Dinesen Birthe, Andersen Ole Kaeseler, et al. Influence of a Marker-based motion capture system on the performance of microsoft Kinect v2 skeleton algorithm[J]. IEEE Sensors Journal, 2019, 19(1): 171-179.

[2] Zhao Min, Xiong Zhaolong, Xing Yan, et al. Real-time integral imaging pickup system based on binocular stereo camera[J]. Infrared and Laser Engineering, 2017, 46(11): 1103007. (in Chinese)

[3] Guo Chunle, Li Chongyi, Guo Jichang, et al. Hierarchical features driven residual learning for depth map super-resolution[J]. IEEE Transaction on Image Processing, 2019, 28(5): 2545-2557.

[4] Chen Guangda, Cui Guowei, Jin Zhongxiao, et al. Accurate intrinsic and extrinsic calibration of RGB-D cameras w with GP-based depth correction [J]. IEEE Sensors Journal, 2019, 19(7): 2685-2694.

[5] Cao Ting, Wang Weixing. Detection method for the depth of pavement broken block in cement concrete based on 3D laser scanning technology[J], Infrared and Laser Engineering, 2017, 46(2): 0206006. (in Chinese)

[6] Moon Sungphill, Park Youngbin, Ko Dong Wook, et al. Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering[J]. International Journal of Advanced Robotic Systems, 2016, 13(65): 1-10.

[7] Boutellaa Elhocine, Hadid Abdenour, Bengherabi Messaoud, et al. On the use of Kinect depth data for identity, gender and ethnicity classification from facial images [J]. Pattern Recognition Letters, 2015, 68(2): 270-277.

[8] Hu Jinhui, Hu Ruimin, Wang Zhongyuan, et al. Color image guided locality regularized representation for depth holes filling[C]//IEEE International Conference on Visual Communications and Image Processing (VCIP), 2013: 17-20.

[9] Yang Jingyu, Gan Ziqiao, Li Kun, et al. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels [J]. IEEE Trans Cybern, 2015, 45(5): 913-926.

[10] Camplani Massimo, Salgado Luis. Efficient spatio-temporal hole filling strategy for Kinect depth maps[C]//Three-Dimensional Image Processing (3DIP) and Applications, 2012: 8290.

[11] Maimone Andrew, Bidwell Jonathan, Peng Kun, et al. Enhanced personal auto stereoscopic telepresence system using commodity depth cameras [J]. Comput Graph, 2012, 36(7): 791-807.

[12] Essmaeel Kyis, Gallo Luigi, Damiani Ernesto, et al. Comparative evaluation of methods for filtering Kinect depth data[J]. Multimed Tools Appl, 2015, 74(17): 7331-7354.

[13] Deng Teng, Li Hui, Cai Jianfei, et al. Kinect shadow detection and classification[C]//IEEE International Conference on Computer Vision Workshops, 2013: 708-713.

[14] Ma Ronggui, Cao Ting, Wang Weixing. HUD image vibration detection on improved edge detection and corner extraction [J] International Journal of Signal Processing, 2014, 7(1): 393-404.

[15] Pu Yifei, Zhou Jiliu, Yuan Xiao. Fractional differential mask: a fractional differential-based approach for milti scale texture enhancement [J]. IEEE Transactions on Image Processing, 2010, 19(2): 491-511.

[16] Perrin Emmanuel, Harba Rachid, Corinne Berzin-Joseph, et al. nth-order fractional Brownian motion and fractional Gaussian noises [J]. IEEE Transactions on Signal Processing, 2001, 49(5): 1049-1059.

[17] Hu Fuyuan, Si Shaohui, San Wong, et al. An adaptive approach for texture enhancement based on a fractional differential operator with non-integer step and order [J]. Neurocomputing, 2015, 158: 295-306.

[18] Cao Ting, Wang Weixing, Tighe Susan, et al. Crack image detection based on fractional differential and fractal dimension [J]. IET Computer Vision, 2019, 13(1): 79-58.

[19] Li Bo, Xie Lei. Image denoising and enhancement based on adaptive fractional calculus of small probability strategy [J]. Neurocomputing, 2016, 175: 704-717.

[20] Cao Ting, Yang Nan, Wang Fengping, et al. Crack image segmentation based on improved DBC method [C]//SPIE Conference on LIDAR Imaging Detection and Target Recognition, 2017, 15(11): 106052B.

张彤, 刘晟, 曹霆. 基于分数阶微分的Kinect传感器深度图像阴影检测方法[J]. 红外与激光工程, 2019, 48(8): 0826002. Zhang Tong, Liu Sheng, Cao Ting. Shadow detection for depth image of Kinect sensor based on fractional differential[J]. Infrared and Laser Engineering, 2019, 48(8): 0826002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!