中国激光, 2020, 47 (2): 0207001, 网络出版: 2020-02-21   

非标记、定量化穆勒矩阵偏振成像在辅助临床诊断中的应用 下载: 1524次特邀综述

Mueller Matrix Polarimetry: A Label-Free, Quantitative Optical Method for Clinical Diagnosis
作者单位
1 清华大学深圳国际研究生院, 广东省偏振光学检测与成像工程技术研究中心,深圳市无损监测与微创医学技术重点实验室, 光学检测与成像研究所, 广东 深圳 518055
2 清华大学生物医学工程系, 北京 100084
3 清华大学清华-伯克利深圳学院, 广东 深圳 518071
4 深圳市第六人民医院(南山医院), 华中科技大学协和深圳医院, 广东 深圳 518052
5 清华大学物理系, 北京 100084
摘要
近年来,随着新型光学器件的出现与数据处理能力的提升,偏振光学成像技术在生物医学领域的应用逐渐增多。穆勒矩阵因可以完备地表述样品的偏振信息,且测量装置可与传统光学仪器兼容,非常适合于生物医学样品的研究。同时,与非偏振光学方法相比,穆勒矩阵对亚波长结构敏感,还可以额外提供包括双折射、二向色性在内的样品的光学各向异性信息。介绍了穆勒矩阵偏振成像的基本理论与装置,包括穆勒矩阵参量的提取、背向散射成像、偏振显微成像、偏振内窥与偏振染色等在生物医学检测中具有一定应用潜力的方法和技术,并展示了穆勒矩阵成像在肝癌、乳腺癌、胃肠肿瘤等多种病理组织辅助诊断中的最新研究进展。穆勒矩阵偏振成像作为一种非标记、定量化、无损伤的快速检测技术,在生物医学领域显示出了广阔的应用前景。
Abstract
Of late, with the emergence of new optical devices and technological advances in data processing, polarization techniques are being increasingly used in biomedicine. Mueller matrix calculus is suitable for describing the polarization properties of biomedical specimens because of its mathematical completeness and compatibility with common optical equipment. Compared with traditional non-polarization optical methods, Mueller matrix polarimetry is sensitive to the scattering induced by subwavelength structures and can provide more information about anisotropic optical properties, including the birefringence and diattenuation of a sample. In this review, we introduce Mueller matrix calculus and related technologies that have great application potential in biomedical studies, including the Mueller matrix decomposition and transformation methods, transmission Mueller matrix microscopes, backscattering Mueller matrix imaging equipment, Mueller matrix endoscopes, and polarization staining techniques. Further, we summarize the improvements in clinical diagnosis made using Mueller matrix polarimetry, such as detection of liver cancer, gastrointestinal cancer, and breast ductal carcinoma tissues. As a label-free, noninvasive, quantitative, and rapid imaging method, Mueller matrix polarimetry has broad application prospects in biomedical studies and clinical diagnosis.
参考文献

[1] . Polarized light interaction with tissues[J]. Journal of Biomedical Optics, 2016, 21(7): 071114.

[2] . Ramella-Roman J C, et al. Special section guest editorial: polarized light for biomedical applications[J]. Journal of Biomedical Optics, 2016, 21(7): 071001.

[3] . Cot'e G L, Jacques S. L. Guest editorial: special section on tissue polarimetry[J]. Journal of Biomedical Optics, 2002, 7(3): 278.

[4] . Tissue polarimetry: concepts, challenges, applications, and outlook[J]. Journal of Biomedical Optics, 2011, 16(11): 110801.

[5] Tuchin VV, Wang LV, Zimnyakov DA. Optical polarization in biomedical applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[6] . MacDonald C, Doronin A, et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media[J]. Journal of Biophotonics, 2015, 8(4): 317-323.

[7] , et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus[J]. Nature Medicine, 2010, 16(5): 603-606.

[8] , et al. Imaging human epithelial properties with polarized light-scattering spectroscopy[J]. Nature Medicine, 2001, 7(11): 1245-1248.

[9] . Mueller polarimetric imaging for surgical and diagnostic applications: a review[J]. Journal of Biophotonics, 2017, 10(8): 950-982.

[10] . Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment[J]. Journal of Biomedical Optics, 2015, 20(6): 061104.

[11] , et al. Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers[J]. Journal of Biomedical Optics, 2013, 18(4): 046002.

[12] . Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal[J]. Optics Letters, 1978, 2(6): 148-150.

[13] , et al. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope[J]. Micron, 2015, 79: 8-15.

[14] , et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope[J]. Biomedical Optics Express, 2017, 8(8): 3643-3655.

[15] . Mueller matrix dual-rotating retarder polarimeter[J]. Applied Optics, 1992, 31(31): 6676-6683.

[16] . Error analysis of a Mueller matrix polarimeter[J]. Journal of the Optical Society of America A, 1990, 7(4): 693-700.

[17] . Mueller matrix algorithms[J]. Proceedings of SPIE, 1992, 1746: 231-246.

[18] . Polarimetric characterization of light and media: physical quantities involved in polarimetric phenomena[J]. Applied Physics, 2007, 40(1): 1-47.

[19] . Arce-Diego J L. Mueller matrix differential decomposition[J]. Optics Letters, 2011, 36(10): 1942-1944.

[20] . Arce-Diego J L. Depolarizing differential Mueller matrices[J]. Optics Letters, 2011, 36(13): 2429-2431.

[21] . Differential matrix formalism for depolarizing anisotropic media[J]. Optics Letters, 2011, 36(12): 2330-2332.

[22] . Retrieval of a nondepolarizing estimate from an experimental Mueller matrix through virtual experiment[J]. Optics Letters, 2012, 37(4): 578-580.

[23] . Differential and product Mueller matrix decompositions: a formal comparison[J]. Optics Letters, 2012, 37(2): 220-222.

[24] , et al. Experimental validation of Mueller matrix differential decomposition[J]. Optics Express, 2012, 20(2): 1151-1163.

[25] , et al. Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media[J]. Journal of Biomedical Optics, 2012, 17(10): 105006-105312.

[26] Goldstein DH. Polarized light[M]. Boca Raton, FL, USA: CRC Press, 2016.

[27] . Interpretation of Mueller matrices based on polar decomposition[J]. Journal of the Optical Society of America A, 1996, 13(5): 1106-1113.

[28] . Wood M F G, Vitkin I A. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence[J]. Journal of Biomedical Optics, 2008, 13(4): 044036.

[29] . Wood M F G, Vitkin I A. Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry[J]. Journal of Applied Physics, 2009, 105(10): 102023.

[30] , et al. Transformation of full 4×4 Mueller matrices: a quantitative technique for biomedical diagnosis[J]. Proceedings of SPIE, 2016, 9707: 97070K.

[31] , et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media[J]. Photonics & Lasers in Medicine, 2013, 2(2): 129-137.

[32] , et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters[J]. Biomedical Optics Express, 2014, 5(12): 4223-4234.

[33] , et al. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging[J]. Journal of Biomedical Optics, 2014, 19(10): 106007.

[34] , et al. Polarimetric imaging of uterine cervix: a case study[J]. Optics Express, 2013, 21(12): 14120-14130.

[35] , et al. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas[J]. Journal of Biomedical Optics, 2013, 18(4): 046014.

[36] , et al. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry[J]. Scientific Reports, 2017, 7: 14702.

[37] , et al. Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium[J]. Optics Letters, 1998, 23(7): 485-487.

[38] , et al. Light backscattering polarization patterns from turbid media: theory and experiment[J]. Applied Optics, 1999, 38(15): 3399-3408.

[39] . Birefringence determination in turbid media[J]. Physical Review E, 2007, 75(3): 032501.

[40] . Propagation of polarized light in birefringent turbid media: a Monte Carlo study[J]. Journal of Biomedical Optics, 2002, 7(3): 279-290.

[41] . Propagation of polarized light in birefringent turbid media: time-resolved simulations[J]. Optics Express, 2001, 9(5): 254-259.

[42] , et al. Monte Carlo simulation of polarized photon scattering in anisotropic media[J]. Optics Express, 2009, 17(19): 16590-16602.

[43] , et al. Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media[J]. Journal of Biomedical Optics, 2012, 17(12): 126016.

[44] , et al. Characteristic features of Mueller matrix patterns for polarization scattering model of biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(1): 1350028.

[45] , et al. Application of sphere-cylinder scattering model to skeletal muscle[J]. Optics Express, 2010, 18(14): 15104-15112.

[46] , et al. Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media[J]. Journal of Biomedical Optics, 2014, 19(6): 065001.

[47] , et al. A study on forward scattering Mueller matrix decomposition in anisotropic medium[J]. Optics Express, 2013, 21(15): 18361-18370.

[48] , et al. A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging[J]. Proceedings of SPIE, 2018, 10489: 104890M.

[49] , et al. Narrow band 3×3 Mueller polarimetric endoscopy[J]. Biomedical Optics Express, 2013, 4(11): 2433-2449.

[50] . A high definition Mueller polarimetric endoscope for tissue characterisation[J]. Scientific Reports, 2016, 6: 25953.

[51] , et al. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method[J]. Journal of Biomedical Optics, 2016, 21(7): 071106.

[52] . 70 kHz full 4×4 Mueller polarimeter and simultaneous fiber calibration for endoscopic applications[J]. Optics Express, 2015, 23(18): 23768-23786.

[53] , et al. Flexible 3×3 Mueller matrix endoscope prototype for cancer detection[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(7): 1700-1712.

[54] , et al. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues[J]. Journal of Biomedical Optics, 2016, 21(7): 071112.

[55] , et al. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues[J]. Journal of Biomedical Optics, 2014, 19(7): 076013.

[56] , et al. Back cover: distinguishing structural features between Crohn's disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters[J]. Journal of Biophotonics, 2019, 12(12): e201900151.

[57] . Tai D C S, et al. qFibrosis: a fully-quantitative innovative method incorporating histological features to facilitate accurate fibrosis scoring in animal model and chronic hepatitis B patients[J]. Journal of Hepatology, 2014, 61(2): 260-269.

[58] , et al. Mueller matrix polarimetry for improved liver fibrosis diagnosis[J]. Optics Letters, 2012, 37(6): 1061-1063.

[59] , et al. Complex vectorial optics through gradient index lens cascades[J]. Nature Communications, 2019, 10: 4264.

[60] , et al. Division of focal plane polarimeter-based 3×4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues[J]. Journal of Biomedical Optics, 2016, 21(5): 056002.

[61] , et al. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging[J]. Journal of Biomedical Optics, 2018, 23(1): 016007.

[62] , 等. 分焦面偏振探测系统的卷积插值方法[J]. 光子学报, 2019, 48(8): 0804001.

    , et al. Convolution interpolation for division of focal plane polarimeter[J]. Acta Photonica Sinica, 2019, 48(8): 0804001.

[63] , 等. 基于穆勒矩阵的金属和电介质识别方法[J]. 激光与光电子学进展, 2019, 56(14): 142401.

    , et al. Identification of metals and dielectrics based on mueller matrix[J]. Laser & Optoelectronics Progress, 2019, 56(14): 142401.

[64] . 基于邦加球轨迹的穆勒矩阵测量法[J]. 激光与光电子学进展, 2018, 55(12): 122603.

    . Measurement method of Müller matrix based on trajectories on Poincare sphere[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122603.

沈元星, 姚悦, 何宏辉, 刘少雄, 马辉. 非标记、定量化穆勒矩阵偏振成像在辅助临床诊断中的应用[J]. 中国激光, 2020, 47(2): 0207001. Shen Yuanxing, Yao Yue, He Honghui, Liu Shaoxiong, Ma Hui. Mueller Matrix Polarimetry: A Label-Free, Quantitative Optical Method for Clinical Diagnosis[J]. Chinese Journal of Lasers, 2020, 47(2): 0207001.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!