光子学报, 2019, 48 (9): 0911002, 网络出版: 2019-10-12  

基于光线追踪的实时可交互计算生成集成成像方法

Realtime Interactive Computergenerated Integral Imaging Method Based on Ray Tracing
作者单位
陆军装甲兵学院 信息通信系, 北京 100072
摘要
为提高计算生成集成成像实时交互显示性能和灵活性, 构建与集成成像再现系统结构一致的集成光场视见模型, 通过该模型为单元图像阵列中每个像素生成一条逆向追踪的光线, 使用光线追踪技术并行渲染光线为单元图像阵列像素着色.实验结果表明, 顶点数为565 880的点云模型、面数为977 308的含纹理网格模型在透镜数为22×13、视点数为175×175的4 K显示系统上显示帧率40 fps以上, 并实现了缩放、移动、旋转、显示微调等交互功能.该方法摆脱了虚拟相机模型, 降低了算法复杂度, 利于实现实时交互, 能够应用于基于不同分布形式透镜阵列的集成成像显示系统.
Abstract
To improve the realtime interactive display performance and flexibility of the computer generated integrated imaging, the integral light field viewing model consistent with the structure of the optical reconstruction system in integrated imaging is constructed. A reversely traced ray for each pixel in the elemental image array is generated by integral light field viewing model, the elemental image array is efficiently shaded as all the rays are computed parallely through ray tracing technology. Experimental results show that, a point cloud model with 565 880 vertex, and a mesh model containing textures with 977 308 faces are optically reconstructed on the 4 K display system at a frame rate of over 40 fps, the system have interactive functions such as scaling, moving, rotation and fine adjustment. Getting rid of the virtual camera model, the method make realtime interaction more effective and convenient, and can be applied to the integral imaging based on lens array with different distribution patterns.
参考文献

[1] LIPPMANN G. Epreuves reversibles donnant la sensation du relief[J]. Journal of Theoretical and Applied Physics, 1908, 7(1): 821825.

[2] WANG Q, DENG H, JIAO T, et al. Imitating microlens array for integral imaging[J]. Chinese Optics Letters, 2010, 8(5): 512514.

[3] 蒋晓瑜,高慧,严志强,等. 集成成像三维显示系统的研究进展及优化方法[J]. 光学与光电技术, 2017, 15(5): 6774.

    JIANG Xiaoyu, GAO Hui, YAN Zhiqiang, et al. Research progress and optimization method of integrated imaging 3d display system[J]. Optics and Optoelectronic Technology, 2017, 15(5): 6474.

[4] LEVOY M, HANRAHAN P. Light field rendering[C]. Proceedings of the 23rd Annual Conference on Computer graphics and Interactive Techniques. ACM, 1996: 3142. .

[5] LEEB H, JUNG S Y, MIN S W, et al. Study of threedimensional display system based on computergenerated integral photography[C]. SPIE, 2001, 4297(2): 187195.

[6] LIUY Q, MING H . Research development of computergenerated integral imaging techniques[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(5): 8184.

[7] MINS W, PARK K S, LEE B H, et al. Enhanced image mapping algorithm for computergenerated integral imaging system[J]. Japanese Journal of Applied Physics, 2006, 45(28): L744L747.

[8] IGARASHI Y, MURATA H, UEDA M. 3D display system using a computer generated integral photograph[J]. Japanese Journal of Applied Physics, 1978, 17(9): 16831684.

[9] HALLEM W, BENTON S A. Multiple viewpoint rendering for threedimensional displays[J]. Massachusetts Institute of Technology, 1997: 243254.

[10] YANGR, HUANG X, CHEN S. Efficient rendering of integral images[C]. ACM SIGGRAPH 2005 Posters ACM, 2005: 44.

[11] PARKK S, MIN S W, CHO Y. Viewpoint vector rendering for efficient elemental image generation[M]. Oxford University Press, 2007.

[12] KWONK C, PARK C, ERDENEBAT M U, et al. High speed image space parallel processing for computergenerated integral imaging system[J]. Optics Express, 2012, 20(2): 732740.

[13] KIMD H, ERDENEBAT M U, KWON K C, et al. Realtime 3D display system based on computergenerated integral imaging technique using enhanced ISPP for hexagonal lens array[J]. Applied Optics, 2013, 52(34): 84118418.

[14] JIAO S, WANG X , ZHOU M , et al. Multiple ray cluster rendering for interactive integral imaging system[J]. Optics Express, 2013, 21(8): 10070.

[15] XING S J, SANG X, YU X, et al. Highefficient computergenerated integral imaging based on the backward raytracing technique and optical reconstruction[J]. Optics Express, 2017, 25(1): 330338.

[16] SUFFERN K. Ray tracing from the ground up[M]. A. K. Peters, Ltd. 2015.

[17] 徐晶. 基于微透镜阵列的集成成像和光场成像研究[D]. 合肥:中国科学技术大学, 2011.

    XU Jing. Integral imaging and optical field imaging based on microlens array[D]. Hefei: University of Science and Technology of China, 2011.

[18] 郭小凯. 光线跟踪及其加速算法的研究[D]. 西安:西安电子科技大学, 2008.

    GUO Xiaokai. Research on ray tracing and its acceleration algorithm[D]. Xi′an: Xidian University, 2008.

[19] 王俊夫, 张文阁, 蒋晓瑜, 等. 三维集成成像显示系统分辨率的测试模型设计[J]. 光子学报, 2018, 47(11): 1111002.

    WANG Junfu, ZHANG Wenge, JIANG Xiaoyu, et al. Design of test model for 3D integrated imaging display system resolution [J]. Acta Photonica Sinica, 2018, 47(11): 1111002.

[20] 桑新柱, 于迅博, 陈铎, 等. 三维光技术研究进展[J]. 激光与光电子学进展, 2017,54(5): 7889.

    SANG Xinzhu, YU Xunbo, CHEN Duo, et al. Research progress of 3d light technology[J]. Laser and Optoelectronics Progress, 2017, 54(5): 7889.

[21] SANGX, GAO X, YU X, et al. Interactive floating fullparallax digital threedimensional lightfield display based on wavefront recomposing[J]. Optics Express, 2018, 26(7): 88838889.

[22] WEN J, YAN X, JIANG X, et al. Nonlinear mapping method for the generation of an elemental image array in a photorealistic pseudoscopic free 3d display[J]. Applied Optics, 2018, 57(22): 63756382.

秦志强, 张文阁, 蒋晓瑜, 闫兴鹏, 严志强. 基于光线追踪的实时可交互计算生成集成成像方法[J]. 光子学报, 2019, 48(9): 0911002. QIN Zhiqiang, ZHANG Wenge, JIANG Xiaoyu, YAN Xingpeng, YAN Zhiqiang. Realtime Interactive Computergenerated Integral Imaging Method Based on Ray Tracing[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0911002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!