红外与激光工程, 2019, 48 (1): 0103005, 网络出版: 2019-04-02  

光谱调制对飞秒脉冲自相似放大系统的影响

Effects of spectral modulation on self-similar amplification systems of femtosecond pulses
作者单位
天津大学 精密仪器与光电子工程学院 超快激光研究室, 天津 300072
摘要
采用数值模拟的方法, 研究了周期性光谱调制对飞秒脉冲自相似放大的影响。构建了叠加光谱调制的飞秒脉冲自相似放大的理论模型, 分析任意相移量、调制深度和调制周期等参量变化对自相似放大系统的影响。结果表明, 任意相移量虽然会改变被调制后光谱具体形状, 但不会影响自相似放大的时域结果; 调制周期较大时, 子脉冲和主脉冲重叠, 对自相似放大过程和结果造成一定程度的破坏; 调制周期较小时, 主脉冲独立放大, 基本不会被子脉冲影响, 这一结论在调制深度改变时依然成立。
Abstract
The effects of periodic spectral modulation on self-similar amplification systems of femtosecond pulses were studied by numerical simulation. Femtosecond pulses with spectral modulation amplified in self-similar amplification theoretical model were simulated, by which the impacts of variables of seed pulses, such as arbitrary phase shift, modulation depth and period, on output results were analyzed. According to the simulation, arbitrary phase shift changes modulated spectral shape, but temporal results of self-similar amplification will not be affected. Besides, large modulation periods make sub-pulses inseparable from main-pulses, disturbing the self-similar amplification process, while small modulation periods bring a longer delay for sub-pulses, making the amplification of main- and sub-pulse independently. This conclusion is still tenable when modulation depth changes.
参考文献

[1] 潘登, 李家文, 杨亮, 等. 水凝胶支架的飞秒激光全息加工[J]. 光学 精密工程, 2017, 25(9): 2277-2282.

    Pan Deng, Li Jiawen, Yang Liang, et al. Femtosecond laser holograpic fabrication of hydrogel cell scaffold[J]. Optics and Precision Engineering, 2017, 25(9): 2277-2282. (in Chinese)

[2] 敬世美, 张轩宇, 梁居发, 等. 飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J]. 中国光学, 2017, 10(4): 449-454.

    Jing Shimei, Zhang Xuanyu, Liang Jufa, et al. Ultrashort fiber Bragg grating written by femtosecond l aser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. (in Chinese)

[3] 李晨, Stoian Razvan, 程光华. 超短脉冲激光诱导周期性表面结构[J]. 中国光学, 2018, 11(1): 1-17.

    Li Chen, Stoian Razvan, Cheng Guanghua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. (in Chinese)

[4] 李志明, 王玺, 聂劲松, 等. 飞秒激光诱导硅表面高频周期结构[J]. 红外与激光工程, 2018, 47(1): 0106003.

    Li Zhiming, Wang Xi, Nie Jinsong, et al. High frequency femtosecond laser induced periodic spatial structure on silicon surface[J]. Infrared and Laser Engineering, 2018, 47(1): 0106003. (in Chinese)

[5] Walter Fu, Logan G Wright, Pavel Sidorenko, et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 2018, 26(8): 9432-9463.

[6] 周朴, 粟荣涛, 黄良金, 等. 基于计算技术的超快光纤激光研究进展与展望(特邀)[J]. 红外与激光工程, 2018, 47(8): 0803001.

    Zhou Pu, Su Rongtao, Huang Liangjin, et al. Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited) [J]. Infrared and Laser Engineering, 2018, 47(8): 0803001. (in Chinese)

[7] Song Huanyu, Liu Bowen, Wen Liang, et al. Optimization of nonlinear compensation in a high-energy femtosecond fiber CPA system by negative TOD fiber [J]. IEEE Photonics Journal, 2017, 9(27): 3200110.

[8] Shah Lawrence, Liu Zhenlin, Hartl Ingmar, et al. High energy femtosecond Yb cubicon fiber amplifier[J]. Optics Express, 2005, 13(12): 4717-4722.

[9] Anderson D, Desaix M, Karlsson M, et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 1993, 10(7): 1185-1187.

[10] Fermann M E, Kruglov V I, Thomsen B C, et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 2000, 84(26): 6010-6013.

[11] Daniel B Soh, Johan Nilsson, Anatoly B Grudinin. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. I. Stimulated Raman-scattering effects[J]. Journal of the Optical Society of America B, 2006, 23(1): 1-9.

[12] Papadopoulos D N, Zaouter Y, Hanna M, et al. Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit[J]. Optics Letters, 2007, 32(17): 2520-2522.

[13] Wang Sijia, Liu Bowen, Gu Chenglin, et al. Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping[J]. Optics Letters, 2013, 38(3): 296-298.

[14] Luo Daping, Liu Yang, Gu Chenglin, et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Applied Physics Letters, 2018, 112(6): 061106.

[15] Fermann M E, Kruglov V I, Thomsen B C, et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 2000, 84(26): 6010-6013.

[16] Damian N Schimpf, Enrico Seise, Jens Limpert, et al. The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems[J]. Optics Express, 2008, 16(14): 10664-10674.

[17] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056.

[18] Finot C, Parmigiani F, Petropoulos P, et al. Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime[J]. Optics Express, 2006, 14(8): 3161-3170.

李源, 宋寰宇, 张韵, 牛佳, 刘博文, 胡明列. 光谱调制对飞秒脉冲自相似放大系统的影响[J]. 红外与激光工程, 2019, 48(1): 0103005. Li Yuan, Song Huanyu, Zhang Yun, Niu Jia, Liu Bowen, Hu Minglie. Effects of spectral modulation on self-similar amplification systems of femtosecond pulses[J]. Infrared and Laser Engineering, 2019, 48(1): 0103005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!