激光与光电子学进展, 2018, 55 (1): 011402, 网络出版: 2018-03-22   

高强铝合金的激光选区熔化成形研究现状 下载: 1805次特邀综述

Research Status of Selective Laser Melting of High Strength Aluminum Alloy
作者单位
华中科技大学武汉光电国家实验室, 湖北 武汉 430074
摘要
随着轻量化、结构功能一体化的强劲需求, 高强铝合金复杂精密零件在航天航空等领域应用广泛, 但因其焊接性能和铸造性能差, 传统加工方法难以制备。激光选区熔化成形(SLM)技术是制备该类零件的最有前景的新方法。高强铝合金对激光吸收率低、热导率高、易氧化、含大量易烧损合金元素, 有很强的热裂倾向, 成形难度极大, 因此目前其SLM成形技术远落后于其他材料。但是由于其广阔的应用前景, 近几年发展迅速。总结了国内外高强铝合金激光选区熔化成形的研究现状、发展趋势及存在的主要问题。
Abstract
With the strong demand of lightweight, structural and functional integration, high strength Al-alloy complicated precision parts are widely used in aerospace and other fields. But due to its poor welding and casting performance, it is difficult to be prepared by conventional techniques. Selective laser melting (SLM) is the most promising method to achieve the high demand requirements for producing such parts. High strength Al-alloy has many disadvantages such as low absorption rate of laser, high thermal conductivity, easy oxidation, containing abundant easy burning loss of alloy elements, which has a strong hot cracking tendency. It is hard to be formed, so its SLM forming technology lags far behind other materials. Despite all that, SLM-processing of high strength Al-alloy is developing rapidly in recent years because of its broad application prospect. This paper summarizes the research status, development trend and the main problems of high strength Al-alloy SLM at home and abroad.
参考文献

[1] 靖冠乙, 魏恺文, 王泽敏, 等. 激光选区熔化成形 S-04钢的组织及性能[J]. 激光与光电子学进展, 2016, 53(11): 111404.

    Jing G Y, Wei K W, Wang Z M, et al. Microstructure and mechanical property of S-04 steel by selective laser melting[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111404.

[2] 丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015, 42(4): 0406003.

    Ding L, Li H X, Wang Y D, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(4): 0406003.

[3] Hu Z H, Zhu H H, Zhang H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87: 17-25.

[4] Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

[5] Wang Z M, Guan K, Gao M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys and Compounds, 2012, 513: 518-523.

[6] Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.

[7] 刘威, 刘婷婷, 廖文和, 等. 选择性激光熔融钴铬合金成形工艺研究[J]. 中国激光, 2015, 42(5): 0503001.

    Liu W, Liu T T, Liao W H, et al. Study on selective laser melting forming process of cobalt chromium alloy[J]. Chinese Journal of Lasers, 2015, 42(5): 0503001.

[8] 宋长辉, 杨永强, 王赟达, 等. CoCrMo合金激光选区熔化成型工艺及其性能研究[J]. 中国激光, 2014, 41(6): 0603001.

    Song C H, Yang Y Q, Wang Y D, et al. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2014, 41(6): 0603001.

[9] Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2): 275-284.

[10] 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607-611.

    Dong P, Li Z H, Yan Z Y, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607-611.

[11] 戴圣龙, 张坤, 杨守杰, 等. 先进航空铝合金材料与应用[M]. 北京: 国防工业出版社, 2012: 1-9.

    Dai S L, Zhang K, Yang S J, et al. Advanced aeronautical aluminum alloy materials technology and application[M]. Beijing: National Defend Industry Press, 2012: 1-9.

[12] Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12(1): 393-401.

[13] Karg M, Ahuja B, Schaub A, et al. Effect of process conditions on mechanical behavior of aluminium wrought alloy EN AW-2618 additively manufactured by laser beam melting in powder bed[C]. 8th International WLT Conference on Lasers in Manufacturing, 2015: 22-25.

[14] Karg M C H, Ahuja B, Wiesenmayer S, et al. Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed[J]. Micromachines, 2017, 8(1): 23.

[15] Karg M C H, Ahuja B, Kuryntsev S, et al. Processability of high strength aluminium-copper alloys AW-2022 and 2024 by laser beam melting in powder bed[C]. Proceedings of the Solid Freeform Fabrication Symposium, 2014: 4-6.

[16] 张虎, 聂小佳, 朱海红,等. 激光选区熔化成形高强Al-Cu-Mg合金研究[J]. 中国激光, 2016, 43(5): 0503007.

    Zhang H, Nie X J, Zhu H H, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(5): 0503007.

[17] Zhang H H, Zhu H, Nie X J, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134: 6-10.

[18] Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918-926.

[19] Reschetnik W, Brüggemann J P, Aydinz M E, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2: 3040-3048.

[20] Sistiaga M L M, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445.

[21] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.

[22] Qi T, Zhu H, Zhang H, et al. Selective laser melting of Al7050 powder:melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135: 257-266.

[23] Spierings A B, Dawson K, Voegtlin M, et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting[J]. CIRP Annals, 2016, 65(1): 213-216.

[24] Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc-and Zr-modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701: 264-273.

[25] Buchbinder D, Meiners W, Wissenbach K, et al. Selective laser melting of aluminium die-cast alloy[C]. Fraunhofer Direct Digital Manufacturing Conference, 2014: 6.

[26] Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115: 52-63.

[27] Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319: 117-128.

朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55(1): 011402. Zhu Haihong, Liao Hailong. Research Status of Selective Laser Melting of High Strength Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011402.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!