红外与激光工程, 2017, 46 (3): 0317004, 网络出版: 2017-06-27   

基于柔性铰链结构的高灵敏度低频光纤光栅加速度传感器

High sensitivity and low-frequency FBG acceleration sensors based on flexure hinge structure
作者单位
1 山东大学 控制科学与工程学院, 山东 济南 250061
2 国网山东安丘市供电公司, 山东 潍坊262100
摘要
设计了一种基于柔性铰链结构的光纤光栅加速度传感器, 进行了结构理论分析, 并构建有限元模型仿真分析了传感器的加速度传感特性。基于F-P滤波器构建了具有温度自补偿功能的光纤光栅加速度检测系统, 并通过增加反馈控制电路, 对F-P滤波器进行反馈控制, 实现了系统的零点自温度补偿。对系统的特性进行了实验测试, 结果表明: 系统对加速度的连续激励信号和冲击激励信号均有良好的动态响应, 系统的固有频率为380.0 Hz, 动态响应范围可达65.6 dB, 频率响应范围为10.0 ~240.0 Hz, 灵敏度为236 pm/g, 所设计的加速度传感器具有较强的横向抗扰能力, 干扰方向灵敏度仅为工作方向灵敏度的3.5%。
Abstract
A fiber grating acceleration sensor based on flexure hinge structure was designed. The structure theory analysis was carried out and the finite element model was built to simulate and analyze the acceleration sensing characteristic of the sensor. A fiber Bragg grating(FBG) acceleration detection system with temperature self-compensation was designed based on F-P filter, which achieved zero temperature self-compensation by adding a feedback circuit to control F-P filter. The characteristics of the system were tested on the built system. The results indicate that the system has excellent response to impulse excitation signal and continuous acceleration excitation signal. Natural frequency of the system is 380.0 Hz, while the dynamic range reaching 65.6 dB. The frequency response range of the system is 10.0 -240.0 Hz, in which the acceleration sensitivity is 236 pm/g. Since the sensitivity in the interference direction is only 3.5% of the sensitivity in the working direction, the acceleration sensor is designed with strong lateral immunity.
参考文献

[1] 钟少龙, 龙亮, 李明, 等. 基于光纤检测技术的扭转敏感微机电系统加速度传感器[J]. 中国激光, 2014, 41(3): 105-115.

    Zhong Shaolong, Long Liang, Li Ming, et al. Torsion-sensitive micro-electro mechanical systems accelerometer sensor based on optic fiber detection technology [J]. Chinese Journal of Lasers, 2014, 41(3): 105-115. (in Chinese)

[2] Majumder M, Ganggopadhyay T K, Chakraborty A K, et al. Fiber Bragg Gratings in structural health monitoring - Preaent status and applications [J]. Sensors and Actuators A Physical, 2008, 147(1): 150-164.

[3] 郭永兴, 张东生, 李杰燕, 等. 光纤光栅二维加速度传感器[J]. 中国激光, 2012, 39(12): 198-204.

    Guo Yongxing, Zhang Dongsheng, Li Jieyan, et al. Two dimensional fiber Bragg grating accelerometer[J]. Chinese Journal of Lasers, 2012, 39(12): 198-204. (in Chinese)

[4] 鲁文高, 孙琪真, 沃江海, 等. 基于分布布拉格反射光纤激光器的高灵敏度微振动传感器[J]. 光学学报, 2014, 34(7):0728006.

    Lu Wengao, Sun Qizhen, Wo Jianghai, et al. High sensitivity micro-vibration sensor based on distributed bragg reflector fiber laser[J]. Acta Optica Sinica, 2014, 34(7):0728006. (in Chinese)

[5] 柯涛, 朱涛, 饶云江, 等. 基于空芯光子晶体光纤的全光纤法布里-珀罗干涉式加速度传感器[J]. 中国激光, 2010, 37(1): 171-175.

    Ke Tao, Zhu Tao, Rao Yunjiang, et al. Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber [J]. Chinese Journal of Lasers, 2010, 37(1): 171-175. (in Chinese)

[6] 曾宇杰, 王俊, 杨华勇, 等. 基于L形刚性梁与弹性膜片结构的低频光纤光栅加速度传感器[J]. 光学学报, 2015, 35(12): 1206005.

    Zeng Yujie, Wang Jun, Yang Huayong, et al. Fiber Bragg grating accelerometer based on L-shaped rigid beam and elastic diaphragm for low-frequency vibration measurement [J]. Acta Optica Sinica, 2015, 35(12): 1206005. (in Chinese)

[7] Catalano A, Bruno F A, Pisco M, et al. An intrusion detection system for the protection of railway assets using fiber Bragg grating sensors [J]. Sensors, 2014, 14(10): 18268-18285.

[8] 马林, 郭新春, 齐艳辉, 等. 基于偏芯结构的光纤传感器的振动传感特性研究[J]. 光学学报, 2014, 34(12): 1206007.

    Ma Lin, Guo Xinchun, Qi Yanhui, et al. Investigation on the vibration characteristic of fiber vibration sensor based on a Core-offset structure [J]. Acta Optica Sinica, 2014, 34(12): 1206007. (in Chinese)

[9] Robert Kuells, Siegfried Nau, Manfred Salk, et al. Novel piezoresistive high-g accelerometer geometry with very high sensitivity-bandwidth product [J]. Sensors and Actuators A: Physical, 2012, 182(8): 41-48.

[10] Guru Prasad A S, Omkar S N, Vikranth H N, et al. Design and development of fiber Bragg grating sensing plate for plantar strain measurement and postural stability analysis [J]. Measurement, 2014, 47(1):7 89-793.

[11] Paulo Antunes, Hugo Lima, Humberto Varum, et al. Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: abode wall case study [J]. Measurement, 2012, 45(7): 1695-1705.

[12] Xu Dongsheng, Yin Jianhua, Cao Zhenzhong, et al. A new flexible FBG sensing beam for measuring dynamic lateral displacements of soil in a shaking table test [J]. Measurement, 2013, 46(1): 200-209.

[13] Khan M M, Panwar N, Dhawan R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation [J]. Sensors and Actuators A: Physical, 2014, 205(1): 79-85.

[14] 王宏亮, 周浩强, 高宏, 等. 基于双等强度悬臂梁的光纤光栅加速度振动传感器[J]. 光电子·激光, 2013, 24(4): 635-641.

    Wang Hongliang, Zhou Haoqiang, Gao Hong, et al. Fiber grating acceleration vibration sensor with double uniform strength cantilever beams [J]. Journal of Optoelectronics·Laser, 2013, 24(4): 635-641. (in Chinese)

[15] Feng Dingyi, Qiao Xueguang, Yang Hangzhou, et al. A fiber Bragg grating accelerometer based on a hybridization of cantilever beam [J]. IEEE Sensor Journal, 2015, 15(3):1532-1537.

[16] 叶婷, 梁大开, 曾婕, 等. 基于弓形梁增敏结构的FBG振动传感器研究[J]. 仪器仪表学报, 2012, 33(1): 139-145.

    Ye Ting, Liang Dakai, Zeng Jie, et al. Study on optical fiber grating vibration sensor based on bow beam sensitive characteristic [J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 139-145. (in Chinese)

[17] 李岚, 董新永, 赵春柳, 等. 简支梁结构的光纤光栅振动传感器[J]. 红外与激光工程, 2011, 40(12): 2497-2500.

    Li Lan, Dong Xinyong, Zhao Chunliu, et al. Simply-supported beam-based fiber Bragg grating vibration sensor [J]. Infrared and Laser Engineering, 2011, 40(12): 2497-2500. (in Chinese)

[18] Zhang Yunshan, Qiao Xueguang, Liu Qinpeng, et al. Study on a fiber Bragg grating accelerometer based on compliant cylinder [J]. Optical Fiber Technology, 2015, 26(12): 229-233.

[19] 史巍巍. 超声激励下的光纤光栅传感响应特性研究[D]. 武汉: 武汉理工大学, 2012: 16-21.

    Shi Weiwei. Research on response characteristics of FBG sensing subject to ultrasonic stimulation [D]. Wuhan: Wuhan University of Technology, 2012: 16-21.

[20] Takedaa N, Okabeb Y, Kuwahara J, et al. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing [J]. Composites Science and Technology, 2005, 65(15-16): 2575-2587.

张法业, 姜明顺, 隋青美, 张雷, 曹玉强, 马国文, 魏钧涛. 基于柔性铰链结构的高灵敏度低频光纤光栅加速度传感器[J]. 红外与激光工程, 2017, 46(3): 0317004. Zhang Faye, Jiang Mingshun, Sui Qingmei, Zhang Lei, Cao Yuqiang, Ma Guowen, Wei Juntao. High sensitivity and low-frequency FBG acceleration sensors based on flexure hinge structure[J]. Infrared and Laser Engineering, 2017, 46(3): 0317004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!