红外, 2017, 38 (9): 28, 网络出版: 2017-10-16  

基于面阵凝视扫描成像的声光光谱成像系统及其图像拼接验证试验

AOTF Imaging Spectrometer Based on Staring/scanning Area Array Detector and Its Image Stitching Test
作者单位
中国科学院上海技术物理研究所国家主动光电重点实验室,上海 100076
摘要
可见—近红外波段(400~1000 nm)成像光谱仪是光谱探测的重要组成部分。基于地基可见—近红外成像光谱仪的实际应用要求,提出了一种采用面阵探测器的凝视扫描成像光谱仪。该光谱仪还采用了一种新型分光器件声光可调谐滤波器(Acousto-optic tunable filter, AOTF)。其特点在于光谱的选择和施加在它上的射频信号频率相关;通过程序控制射频信号,就可以控制光谱。利用设计的光谱成像原理样机进行了地基月球观测实验。基于实验的特点,在光学设计的基础上增加了另一路共轴辅助光学,以进行粗定位。在获取成像结果之后,进行了辐射定标和尺度不变特征变换(Scale Invariant Feature Transformation, SIFT)图像拼接处理。结果表明,利用二维指向机构和面阵凝视成像系统,结合SIFT图像拼接算法,可有效获取宽幅高分辨率光谱图像。
Abstract
A visible and near infrared imaging spectrometer is one of the important parts for spectral detection. According to the actual application requirements of a ground-based visible and near infrared imaging spectrometer, a staring/scanning imaging spectrometer using an area array detector is proposed. The spectrometer also employs a new light splitting device-an Accousto-optical Tunable Filter (AOTF). It has a feature that the selection of spectrum is related to the frequency of the RF signal applied to it. By controlling the RF signal via a program, the spectrum can be controlled. A ground-based lunar observation experiment is carried out with the imaging spectrometer prototype designed. According to the experimental characteristics, another auxiliary coaxial optics is added for rough positioning on the basis of optical design. After the imaging results are acquired, radiometric calibration and SIFT image stitching are implemented. The results show that by combining a two-dimensional pointing mechanism and a staring imaging system with the SIFT image stitching algorithm, wide width high resolution spectral images can be acquired effectively.
参考文献

[1] 沈中,葛之江,张连台.航天超光谱成像仪技术原理及其发展现状[J].航天器工程,2001,(4):45–52.

[2] 刘济凡,马艳华,张雷,等.AOTF成像光谱仪及其在青藏高原多尺度遥感中的试验应用[J].红外与毫米波学报,2013,(1):86–90.

[3] He Z P, Wang B Y, Lv G, et al. Visible and Near-infrared Imaging Spectrometer and its Preliminary Results from the Chang’E 3 Project[J].Review of Scientific Instruments, 2014,(8):083104–083104-3.

[4] 郝慧敏,曹建安,于志强,等.AOTF-NIR光谱仪用于混合气体定量分析的探索[J].光谱学与光谱分析,2009,(8):87–91.

[5] Gupta N, Dahmani R. AOTF Spectrometer for Water Pollutant Monitoring[C].Engineering in Medicine and Biology Society, Proceeding of the 19th Annual International Conference of the IEEE, 1997:751–752.

[6] 王建宇, 舒嵘, 刘银年, 等.成像光谱技术导论[M]. 北京: 科学出版社, 2011.

[7] 郝爱花,胡炳樑,白加光,等. 大视场宽谱段高分辨率分波段机载紫外—可见光成像光谱仪设计[J].光谱学与光谱分析,2013,(12):3432–3436.

[8] 李新娥. 大视场多光谱相机图像拼接与融合技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2015.

[9] 邱民朴. 大视场红外扫描成像光学系统设计[J].红外技术,2012,(11):648–651.

[10] Li H,Niu J Z,Guo H. Automatic Seamless Image Mosaic Method Based on Feature Points[J].Computer Engineering and Design,2007,(9):2083–2085.

徐映宇, 秦侠格, 姬忠鹏, 何志平, 王建宇. 基于面阵凝视扫描成像的声光光谱成像系统及其图像拼接验证试验[J]. 红外, 2017, 38(9): 28. XU Ying-yu, QIN Xia-ge, JI Zhong-peng, HE Zhi-ping, WANG Jian-yu. AOTF Imaging Spectrometer Based on Staring/scanning Area Array Detector and Its Image Stitching Test[J]. INFRARED, 2017, 38(9): 28.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!