人工晶体学报, 2020, 49 (6): 1101, 网络出版: 2020-08-07  

填隙法在抛光铜衬底上制备高质量石墨烯薄膜

Graphene Films with High Quality Grown on Polished Copper Substrates by Gap-filling Method
作者单位
1 渤海大学新能源学院, 锦州 121013
2 锦州师范高等专科学校, 锦州 121000
摘要
本文对在抛光铜衬底上通过填隙法制备的高质量石墨烯薄膜进行了详细研究。在电化学机械抛光后的铜衬底上制备石墨烯晶畴, 降低了晶畴的成核密度。利用光学显微镜和扫描电子显微镜对抛光铜衬底和未抛光铜衬底上制备的石墨烯晶畴进行测试, 测试结果表明, 铜衬底的表面形态对于降低石墨烯的成核密度, 增大石墨烯晶畴的尺寸起到了至关重要的作用。利用拉曼面扫描证明了所制备的石墨烯晶畴为单层、均匀的石墨烯晶畴。然后, 通过填隙法在抛光铜衬底上制备出由大尺寸单层的六边形石墨烯晶畴组成的石墨烯连续薄膜, 并且通过流程示意图解释了填隙法制备高质量石墨烯薄膜的过程。本文所提出的在抛光铜衬底上通过填隙法制备石墨烯薄膜的技术, 能够有效提高石墨烯薄膜的质量, 进而有效改善石墨烯基电子器件的性能。
Abstract
This paper presents a detailed study of gap-filling method to fabricate graphene films with high quality on polished Cu substrate. The nucleation density of graphene domains (GDs) reduces on the electrochemically and mechanically polished (ECMP) Cu substrate. Through the optical microscope and scanning electron microscope (SEM) testing of the graphene domains grown on the unpolished and polished Cu substrate, it demonstrated that the surface morphology of the Cu substrate was crucial in reducing the nucleation density and increasing the size of GDs. The Raman maps demonstrate that the GDs were homogeneous and monolayer graphene domains. Then large-area homogeneous monolayer graphene films with large-scale hexagonal domains were synthesized on the polishing Cu substrate by the gap-filling method. The process of preparing high quality graphene film by gap-filling method is explained through flow chart. Consequently, the technique of fabricate graphene films with high quality on polished Cu substrate by gap-filling method proposed in this paper can conveniently improve the properties of graphene films and graphene-based photoelectronic devices.
参考文献

[1] Bolotin K I, Ghahari F, Shulman M D, et al. Observation of the fractional quantum Hall effect in graphene[J].Nature,2009,462(7270): 196-9.

[2] Castro Neto A H, Guines F, Peres N R, et al. The electronic properties of graphene[J].Rev. Mod. Phys.,2009,81(1): 109-62.

[3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696): 666-9.

[4] Geim A K, Novoselov K S. The rise of graphene[J].Nat. Mater.,2007,6(3): 183-91.

[5] Schwierz F. Graphene transistors: status, prospects and problems[J].P. Ieee.,2013,101(7): 1567-84.

[6] Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J].Nat. Nanotechnol.,2014,9: 273-278.

[7] Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J].Nat. Mater.,2015,14: 271-279.

[8] Li X S, Magnuson C W, Venugopal A, et al. Graphene films with large domain size by a two-step chemical vapor deposition process[J].Nano. Lett.,2010,10(11): 4328-34.

[9] Wang H, Wang G Z, Bao P F, et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J].J. Am. Chem. Soc.,2012,134(8): 3627-30.

[10] Kiyeol Lee, Jongpil Ye. Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate[J].Carbon,2016,100: 1-6.

[11] Usachov D, Dobrotvorskii A, Varykhalov A, et al. Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces[J].Phys. Rev. B.,2008,78(8): 705-712.

[12] Wang B, Zhang Y, Chen Z, et al. High quality graphene grown on single-crystal Mo(110) thin films[J].Mater. Lett.,2013,93: 165-8.

[13] Oznuluer T, Pince E, Polat E O, et al. Synthesis of Graphene on Gold[J].Appl. Phys. Lett.,2011,98: 183101.

[14] Li X, Cai W W, An J H, et al. Large area synthesis of high quality and uniform graphene films on copper foils[J].Science,2009,324: 1312-14.

[15] Gao L, Ren W, Zhao J, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J].Appl. Phys. Lett.,2010,97: 183109.

[16] Vlassiouk I, Fulvio P, Meyer H, et al. Large scale atmospheric pressure chemical vapor deposition of graphene[J].Carbon,2013,54: 58-67.

[17] Zhang Y, Zhang L Y, Zhou C G. Review of chemical vapor deposition of graphene and related applications[J].Accounts Chem. Res.,2013,46: 2329-39.

[18] Luo B R, Chen B Y, Meng L, et al. Layer-stacking growth and electrical transport of hierarchical graphene architectures[J].Adv. Mater.,2014,26: 3218-24.

[19] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nat. Nanotechnol.,2010,5(8): 574-8.

[20] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230): 706-10.

[21] Lee S, Lee K, Zhong Z H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition[J]. Nano Lett., 2010, 10(11): 4702-7.

[22] 王 彬, 李成程, 孟婷婷, 等.化学气相沉积法制备石墨烯晶畴的氧气刻蚀现象研究[J].人工晶体学报,2017,46(6): 1122-1125.

[23] Zhu W J, Low T, Perebeinos V, et al. Structure and electronic transport in graphene wrinkles[J].Nano Lett.,2012,12: 3431.

[24] Meng L, Su Y, Geng D, et al. Hierarchy of graphene wrinkles induced by thermal strain engineering[J].Appl. Phys. Lett.,2013,103: 251610.

[25] Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J].Nature mater.,2011,10: 443-449.

[26] Song H S, Li S L, Miyazaki H, et al. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition[J].Sci. Rep.,2012,2: 337.

[27] Nie S, Wofford J M, Bartelt N C, et al. Origin of the mosaicity in graphene grown on Cu(111)[J].Phys. Rev. B,2011,84: 155425.

[28] Gao J F, Yip J, Zhao J J, et al. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge[J].J. Am. Chem. Soc.,2011,133(13): 5009-15.

[29] Geng D C, Meng L, Chen B Y, et al. Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface[J].Adv. Mater.,2014,26: 6423-29.

王彬, 王宇薇. 填隙法在抛光铜衬底上制备高质量石墨烯薄膜[J]. 人工晶体学报, 2020, 49(6): 1101. WANG Bin, WANG Yuwei. Graphene Films with High Quality Grown on Polished Copper Substrates by Gap-filling Method[J]. Journal of Synthetic Crystals, 2020, 49(6): 1101.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!