光学 精密工程, 2014, 22 (1): 50, 网络出版: 2014-02-18   

微型铷原子钟专用795 nm垂直腔表面发射激光器

795 nm VCSELs for 87Rb based miniaturized atomic clock
作者单位
1 中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
针对铷(87Rb)原子钟激励光源微型化和高温工作的特殊需求,设计并制备了对应铷原子能级跃迁的795 nm垂直腔面发射激光器(VCSEL)。首先,根据k·p理论计算了InAlGaAs/AlGaAs量子阱的价带能级和材料增益,得到最优的量子阱组分和厚度; 然后,采用一维传输矩阵方法设计了795 nm波段的布拉格反射器(DBR),根据完整结构VCSEL器件的驻波场分布设计了掺杂分布; 最后,采用金属有机气相外延(MOVPE)技术生长了优化的795 nm VCSEL外延结构,并制备了氧化限制型非闭合台面结构的795 nm顶发射器件。实验显示: 封装后的75 μm口径器件可在室温至85 ℃范围内连续工作,最高功率为17 mW,激光光束呈圆形,发散角为15°,激射波长的温漂系数为0.064 nm/℃; 在温度为52 ℃、注入电流为100 mA时,激射波长位于794.7 nm(对应铷原子钟需要的波长),基本满足铷原子钟激励光源对波长稳定和高温工作的要求。
Abstract
For the special requirements of the exciting source of a 87Rb based atomic clock for the miniaturization and high temperature conditions, a 795 nm Vertical Cavity Surface Emitting Laser(VCSEL)corresponding to the Rb atom energy level transition was designed and fabricated. Firstly, the energy levels and material gains of the InAlGaAs/AlGaAs Multiple Quantum Wells (MQWs) were calculated by the k·p method to optimize the compositions and thicknesses of the quantum wells. Then, a Distributed Bragg Reflectors(DBRs) at 795 nm were designed and their reflection characteristics, longitudinal optical fields and averaged doping profiles were calculated and optimized using a one-dimensional transfer matrix method. Finally, the epitaxial structure of the 795 nm VCSEL with optimized MQWs and DBRs were grown on a GaAs substrate by Metal Organic Vapor Phase Epitaxy (MOVPE) and the oxide-confined 795 nm top-emitting VCSELs with unclosed-mesa structures were fabricated and characterized. Experimental results indicate that the packaged VCSELs can keep lasing under a cw current from 25 ℃ to 85 ℃ with power decreasing from 17 mW to 1.8 mW, the far field profiles are circular with a divergence angle of 15° and the temperature-shift of the lasing wavelength is 0.064 nm/℃. Moreover, the lasing wavelength moves to the wavelength required by 87Rb atoms at an ambient temperature of 52 ℃ and a current of 100 mA. The 795 nm VCSELs satisfy the basic requirements of 87Rb based miniaturized atom clocks for stable operation in a special wavelength and high-temperatures.
参考文献

[1] 张星,宁永强,曾玉刚,等. 980 nm高功率垂直腔面发射激光列阵的单元结构优化[J]. 光学 精密工程, 2011,19(9): 2014-2021.

    ZHANG X, NING Y Q, ZENG Y G, et al.. Optimization of 980 nm high-power vertical cavity surface emitting laser array element [J]. Opt. Precision Eng., 2011,19(9): 2014-2021. (in Chinese)

[2] 田振华,胡永生,秦莉,等. 高功率垂直腔面发射激光器的光束准直特性[J]. 发光学报,2011,32(9): 939-943.

    TIAN ZH H,HU Y SH, QIN L, et al.. Collimation of high power vertical cavity surface emitting laser (VCSEL)[J]. Chin. J. Lumin., 2011,32(9): 939-943. (in Chinese)

[3] 张岩,宁永强,秦莉,等. 小发散角垂直腔面发射激光器的设计与制作[J]. 发光学报,2011,32(1): 47-52.

    ZHANG Y,NING Y Q,QIN L, et al.. Design and fabrication of vertical cavity surface-emitting laser with small divergence [J]. Chin. J. Lumin., 2011,32(1): 47-52.(in Chinese)

[4] 吕亮,张可,戴绩俊,等. 基于垂直腔面发射半导体激光器的自混合测速实验[J]. 光学 精密工程,2011,19(1): 23-28.

    Lv L,ZHANG K,DAI J J, et al.. Self-mixing velocimetry based on verical cavity surface-emitting laser [J]. Opt. Precision Eng., 2011,19(1): 23-28. (in Chinese)

[5] 史晶晶,秦莉,宁永强,等. 850 nm垂直腔面发射激光器列阵[J]. 光学 精密工程,2012,20(1): 17-23.

    SHI J J,QIN L,NING Y Q, et al.. 850 nm vertical cavity surface-emitting laser array[J]. Opt. Precision Eng., 2012,20(1): 17-23. (in Chinese)

[6] ZHANG X W,NING Y Q,QIN L,et al..Stable polarization control of 980 nm high-power vertical-cavity surface-emitting lasers using sub-wavelength rectangular metal gratings [J].Chinese Journal of Luminescence,2013,34(9): 1188-1193.

[7] 汪丽杰,佟存柱,曾玉刚,等.高亮度布拉格反射波导激光器[J].发光学报,2013,34(6): 787-791.

    WANG L G,TONG C ZH,ZENG Y G.High brightness bragg reflection waveguide laser [J].Chinese Journal of Luminescence,2013,34(6): 787-791.(in Chinese)

[8] WESTBERGH P,GUSTAVSSON J,KOGEL B, et al.. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL[J]. Electron Lett., 2010,46: 1014-1016.

[9] LARSSON A. Advances in VCSELs for communication and sensing[J]. IEEE J. Sel. Top Quantum Electron., 2011,17(6): 1552-1567.

[10] SERKAND D K,PEAKEA G M,GEIBA K M, et al.. VCSELs for atomic clocks [J]. SPIE, 2006, 6132: 1-8.

[11] 张首刚.新型原子钟发展现状[J]. 时间频率学报, 2009,32(2): 81-91.

    ZHANG SH G. Progress of novel atomic clocks[J]. J.Time and Frequency, 2009,32(2): 81-91.(in Chinese)

[12] ARIMONDO E. Coherent population trapping in laser spectroscopy [J]. Progress in Optics, 1996,35: 257-354.

[13] LUTWAK R,EMMONS D,ENGLISH T, et al.. The chip-scale atomic clock-recent development progress[R].Symmetricom-Technology Realization Center Beverlyma, 2004.

[14] GORECKI C,HASEGAWA M,PASSILLY N, et al.. Towards the realization of the first European MEMS atomic clock [C].IEEE/LEOS,2009: 47-48.

[15] 陈杰华,杜润昌,赵劼成,等. 激光光谱研究垂直腔面发射激光器的特性[J]. 中国激光,2010,37(10): 2515-2519.

    CHEN J H,DU R CH,ZHAO J CH, et al.. Study on characteristics of vertical-cavity surface- emitting laser by laser spectrometry [J]. Chinese Journal of Laser, 2010,37(10): 2515-2519. (in Chinese)

[16] SERKLAND D K,PEAKE G M,GEIB K M, et al.. VCSELs for atomic clocks[J]. SPIE,2006,6132: 613208-613201.

[17] WAHL D,SETZ D,AL-SAMANEH A. Development of VCSELs for atomic clock applications[R]. Annual Report, 2008: 49-54.

[18] CHANG C S,CHUANG S L.Modeling of strained quantum-well lasers with spin-orbit coupling [J].Selected Topics in Quantum Electronics,1995,1(2): 218-229.

[19] PIPREK J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation[M].Academic Press, 2003.

[20] 李特,宁永强,郝二娟,等. 980 nm底发射VCSEL的DBR设计与优化[J]. 中国科学(F辑): 信息科学, 2009,39(8): 918-922.

    LI T, NING Y Q, HAO E J, et al.. Design and optimization of bottom emitting 980 nm VCSELs[J]. Science in China F: Information Sciences,2009,39(8): 918-922.(in Chinese)

[21] HEGBLOM E R. Engineering Oxide Apertures in Vertical Cavity Lasers [D]. Santa Barbara: Univ. California, 1999.

张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军. 微型铷原子钟专用795 nm垂直腔表面发射激光器[J]. 光学 精密工程, 2014, 22(1): 50. ZHANG Jian, NING Yong-qiang, ZHANG Jian-wei, ZHANG Xing, ZENG Yu-gang, WANG Li-jun. 795 nm VCSELs for 87Rb based miniaturized atomic clock[J]. Optics and Precision Engineering, 2014, 22(1): 50.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!