发光学报, 2013, 34 (5): 595, 网络出版: 2013-05-22   

氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用

Graphene Oxide as Doping Material for Assembling OLEDs via Thermal Co-evaporation with NPB and Alq3
作者单位
1 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原030024
2 太原理工大学 新材料工程技术研究中心, 山西 太原030024
3 太原理工大学 物理与光电工程学院, 山西 太原030024
4 山西大同大学 碳材料研究所, 山西 大同037009
摘要
通过共蒸镀掺杂的方法, 分别用氧化石墨烯和NPB掺杂作为空穴传输层以及氧化石墨烯和Alq3掺杂作为电子传输层和发光层, 制备了两种不同的有机电致发光器件。器件性能测试结果表明: 相对于未掺杂的参比器件, 氧化石墨烯与NPB共蒸镀掺杂的器件性能降低, 与Alq3共蒸镀掺杂的器件性能提高。其中, 氧化石墨烯掺杂量为Alq3的10%时, 器件发光亮度为掺杂前的1.2倍, 电流效率为掺杂前的2倍。这一工作为进一步提高OLED性能提供了新的途径。
Abstract
Graphene oxide was explored as doping material that doped into hole transporting layer (NPB) and electron transporting layer (Alq3) via thermal co-evaporation respectively to fabricate two types of OLED devices. The experimental results indicated that thermal co-evaporation of graphene oxide with Alq3 act as electron transporting layer can improve the device performance while with NPB as hole transporting layer decrease the performance. And it turns out that device doped 10% graphene oxide in Alq3 layer exhibited 1.2 fold higher of luminance and 2 fold higher of current efficiency than that of updoped one.
参考文献

[1] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device [J]. Science, 2005, 267 (5202):1332-1334.

[2] Xie X D, Hao Y Y, Zhang R G, et al. Lithium-doped tris(8-hydroxyquinoline) aluminum studied by density functional theory [J]. Acta Phys. Sinica (物理学报), 2012, 61(12):127201-1-7 (in Chinese).

[3] Zhao Y B, Chen J S, Ma D G. Realization of high efficiency orange and white organic light emitting diodes by introducing an ultra-thin undoped orange emitting layer [J]. Appl. Phys. Lett., 2011, 99(16):163303-1-3.

[4] Zhang S M, Chen Y, Wang X H, et al. White organic light-emitting diodes with high color rendering index using phosphorescent sensitizer and blue fluorescent emitter [J]. Chin。 J. Lumin.(发光学报), 2012, 33(1):97-101 (in Chinese).

[5] Kamtekar K T, Monkman A P, Bryce M R. Recent advances in white organic light-emitting materials and devices (WOLEDs) [J]. Adv. Mater., 2010, 22(5):572-582.

[6] Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.

[7] Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin film [J]. Appl. Phys., 1989, 65(9):3610-3616.

[8] Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698):151-154.

[9] Choudhury K R, Yoon J H, So F. LiF as an n-dopant in tris(8-hydroxyquinoline) aluminum thin films [J]. Adv. Mater., 2008, 20(8):1456-1461.

[10] Zhang R, Li C N, Li T, et al. Fabrication of inverted bottom organic light-emitting device with Li3N n-type doping electron injecting layer [J]. Acta Photonica Sinica (光子学报), 2011, 40(2):199-203 (in Chinese).

[11] Li D, Kaner R B. Graphene-based materials [J]. Science, 2008, 320(5880): 1170-1171.

[12] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotechnol., 2009, 4(4):217-224.

[13] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene:Versatile building blocks for carbon-based materials [J]. Small, 2010, 6(6):711-723.

[14] Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces [J]. J. Am. Chem. Soc., 2010, 132(23):8180-8186.

[15] Kim J, Cote L J, Kim F, et al. Visualizing graphene based sheets by fluorescence quenching microscopy [J]. J. Am. Chem. Soc., 2010, 132(1):260-267.

[16] Cote L J, Kim J, Zhang Z, et al. Tunable assembly of graphene oxide surfactant sheets: Wrinkles, overlaps and impacts on thin film properties [J]. Soft Matter., 2010, 6(24):6096-6101.

[17] Tung V C, Kim J, Cote L J, et al. Sticky interconnect for solution-processed tandem solar cells [J]. J. Am. Chem. Soc., 2011, 133(24):9262-9265.

[18] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230):706-710.

[19] Wu J B, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes [J]. ACS Nano, 2010, 4(1):43-48.

[20] Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material:Graphene [J]. Adv. Mater., 2008, 20(20):3924-3930.

[21] Daniela C M, Dmitry V K, Jacob M B, et al. Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4(8):4806-4814.

郭颂, 杜晓刚, 刘晓云, 刘慧慧, 王华, 郝玉英, 许并社, 赵建国, 郭鹍鹏. 氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用[J]. 发光学报, 2013, 34(5): 595. GUO Song, DU Xiao-gang, LIU Xiao-yun, LIU Hui-hui, WANG Hua, HAO Yu-ying, XU Bing-she, ZHAO Jian-guo, GUO Kun-peng. Graphene Oxide as Doping Material for Assembling OLEDs via Thermal Co-evaporation with NPB and Alq3[J]. Chinese Journal of Luminescence, 2013, 34(5): 595.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!