光学学报, 2014, 34 (11): 1106004, 网络出版: 2014-10-08   

金属镀层光纤环的热应力及其引起的弹光效应

Thermal Stress and the Associated Photoelastic Effect of the Metal Coated Fiber Loop
作者单位
南昌大学机电工程学院江西省机器人及焊接自动化重点实验室, 江西 南昌 330031
摘要
为了研究金属镀层对光纤宏弯损耗性能的影响,建立了带金属镀层的光纤环所受热应力及热应力引起的弹光效应的数学模型。计算了金属镀层光纤环的热应力系数和折射率热应力系数。仿真分析了光纤环向热应力系数Kθt、径向热应力系数Krt和折射率热应力系数Kn的主要影响因素。结果表明:Kθt远大于Krt,光纤主要受到环向热应力,径向热应力可忽略;热应力及其引起的折射率变化与径向位置和镀层厚度有关,与光纤环的弯曲半径基本无关;镀层厚度在0~2000 μm范围内,随着厚度增加,Kθt和Kn均会先快速增大,再缓慢增大并趋于稳定;Kn为负值,随着温度增加,热应力将引起光纤折射率逐渐减小。该模型从理论上解释了金属镀层光纤环的热应力会引起光纤折射率变小,从而改变光纤的宏弯损耗。
Abstract
In order to study effect of the metal coating on the macrobending loss properties of a fiber loop, two mathematical models of the thermal stress and the associated photoelastic effect of the metal coated fiber loop are established. The thermal stress coefficients and thermal stress dependent refractive index coefficients of the fiber loop with metal coating are calculated. Impact factors of the thermal stress coefficients Kθt, Krt and the thermal stress dependent refractive index coefficient Kn are simulated. The results indicate that Kθt is much greater than Krt at the same circumstance. Consequently, the metal coated fiber loop mainly suffers the annular thermal stress and the radial thermal stress can be ignored. The thermal stress and its induced refractive index change alter with the reference radial position and thickness of the coating rather than the bend radius of the loop. When the thickness of the metal coating increases from 0 to 2000 μm, Kθt and Kn both undergo a process of a sharp increase, and than transfer to a slow growth and tend to a stable value. Since Kn is negative, refractive index decreases as the temperature increases. The presented models are feasible to explain that refractive index of the fiber decreases with the increase of temperature, thus altering the macrobending loss of the metal coated fiber loop.
参考文献

[1] 廖延彪. 光纤光学[M]. 北京: 清华大学出版社, 2000. 90-95.

    Liao Yanbiao. Fiber Optics [M]. Beijing: Tsinghua University Press, 2000. 90-95.

[2] 范宇强, 袁余锋, 魏婉婷, 等. 基于LP21模式的光纤弯曲传感器[J]. 光学学报, 2012, 32(11): 1128005.

    Fan Yuqiang, Yuan Yufeng, Wei Wanting, et al.. Fiber bending sensor based on LP21 mode [J]. Acta Optica Sinica, 2012, 32(11): 1128005.

[3] G Rajan, Y Semenova, J Mathew. Experimental analysis and demonstration of a low cost fibre optic temperature sensor system for engineering applications [J]. Sens Actuators A, 2010, 163(1): 88-95.

[4] A Zendehnam, M Mirzaei, A Farashiani, et al.. Investigation of bending loss in a single-mode optical fiber [J]. Pramana-J Phys, 2010, 74(4): 591-603.

[5] P Wang, G Brambilla, Y Semenova, et al.. A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system [J]. J Opt, 2011, 13(7): 1-5.

[6] A Martinez-Rios, D Monzon-Hernandez, I Torres-Gomez, et al.. An intrinsic fiber-optic single loop micro-displacement sensor [J]. Sensors, 2012, 12(1): 415-428.

[7] 尧舜, 庞晓林, 代京京, 等. 小半径弯曲条件下传能光纤传输效率研究[J]. 光学学报, 2011, 31(1): 0106001.

    Yao Shun, Pang Xiaolin, Dai Jingjing, et al.. Transmission efficiency of bending fiber with small radius [J]. Acta Optica Sinica, 2011, 31(1): 0106001.

[8] 饶春芳, 张华, 冯艳, 等. 光纤布拉格光栅金属化保护中的应力[J]. 激光与光电子学进展, 2012, 49(6): 060601.

    Rao Chunfang, Zhang Hua, Feng Yan, et al.. Stress in metal coating fiber Bragg grating [J]. Laser & Optoelectronics Progress, 2012, 49(6): 060601.

[9] J H Hannay. Mode coupling in an elastically deformed optical fibre [J]. Electron Lett, 1976, 12(7): 173-174.

[10] 王雪珍, 卞保民, 纪运景, 等. 单模光纤弯曲损耗理论模型的修正[J]. 光子学报, 2006, 35(6): 819-823.

    Wang Xuezhen, Bian Baomin, Ji Yunjing, et al.. Theoretical model modify of bending loss of mono-mode fiber [J]. Acta Photonica Sinica, 2006, 35(6): 819-823.

[11] 李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京: 中国电力出版社, 2004. 59-68.

    Li Weite, Huang Baohai, Bi Zhongbo. Analysis and Application of Thermal Stress Theory [M]. Beijing: China Electric Power Press, 2004. 59-68.

[12] 王仲仁, 苑世剑, 胡连喜, 等. 弹性与塑形力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007. 134-139.

    Wang Zhongren, Yuan Shijian, Hu Lianxi, et al.. Fundamentals of Elasticity and Plasticity [M]. Harbin: Harbin Institute of Technology Press, 2007. 134-139.

[13] P Wang, Y Semenova, G Farrell. Temperature dependence of macrobending loss in all-fiber bend loss edge filter [J]. Opt Commun, 2008, 281(17): 4312-4316.

[14] 皮浩洋, 刘琼, 叶青. 金属化光纤光栅内应力的分析和实验研究[J]. 中国激光, 2012, 39(3): 0305008.

    Pi Haoyang, Liu Qiong, Ye Qing. Analysis and experimental study of inner stress for metallized fiber Bragg gratings [J]. Chinese J Lasers, 2012, 39(3): 0305008.

[15] 冯艳, 张华, 李玉龙, 等. 金属化保护的光纤布拉格光栅温度传感模型[J]. 光学学报, 2009, 29(2): 336-341.

    Feng Yan, Zhang Hua, Li Yulong, et al.. Temperature sensitization model of fiber Bragg grating with metal coating [J]. Acta Optica Sinica, 2009, 29(2): 336-341.

[16] Guo Yongxing, Zhang Dongsheng, Zhou Zude, et al.. Welding-packaged accelerometer based on metal-coated FBG [J]. Chin Opt Lett, 2013, 11(7): 070604.

[17] 杨海波, 曹建国, 李洪波. 弹性与塑性力学简明教程[M]. 北京: 清华大学出版社, 2011. 45-47.

    Yang Haibo, Cao Jianguo, Li Hongbo. Introduction to Elasticity and Plasticity [M]. Beijing: Tsinghua University Press, 2011. 45-47.

彭星玲, 张华, 李玉龙. 金属镀层光纤环的热应力及其引起的弹光效应[J]. 光学学报, 2014, 34(11): 1106004. Peng Xingling, Zhang Hua, Li Yulong. Thermal Stress and the Associated Photoelastic Effect of the Metal Coated Fiber Loop[J]. Acta Optica Sinica, 2014, 34(11): 1106004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!