光学学报, 2018, 38 (8): 0815015, 网络出版: 2018-09-06   

液晶透镜无偏振片成像的优化算法 下载: 898次

An Optimization Algorithm for Polarizer-Free Imaging of Liquid Crystal Lens
作者单位
1 电子科技大学光电科学与工程学院, 四川 成都 610054
2 微晶景泰科技有限公司, 四川 成都 610000
引用该论文

白一晨, 陈晓西, 曾俊, 叶茂. 液晶透镜无偏振片成像的优化算法[J]. 光学学报, 2018, 38(8): 0815015.

Yichen Bai, Xiaoxi Chen, Jun Zeng, Mao Ye. An Optimization Algorithm for Polarizer-Free Imaging of Liquid Crystal Lens[J]. Acta Optica Sinica, 2018, 38(8): 0815015.

参考文献

[1] Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting[J]. The European Physical Journal E, 2000, 3(2): 159-163.

    Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting[J]. The European Physical Journal E, 2000, 3(2): 159-163.

[2] Hendriks B H W, Kuiper S, et al. . Variable liquid lenses for electronic products[J]. Proceedings of SPIE, 2006, 6034: 603402.

    Hendriks B H W, Kuiper S, et al. . Variable liquid lenses for electronic products[J]. Proceedings of SPIE, 2006, 6034: 603402.

[3] 张鹰, 张新, 史广维. 液体透镜在变焦系统中的应用[J]. 中国光学, 2013, 6(1): 46-56.

    张鹰, 张新, 史广维. 液体透镜在变焦系统中的应用[J]. 中国光学, 2013, 6(1): 46-56.

    Zhang Y, Zhang X, Shi G W. Applications of liquid lenses in zoom systems[J]. Chinese Optics, 2013, 6(1): 46-56.

    Zhang Y, Zhang X, Shi G W. Applications of liquid lenses in zoom systems[J]. Chinese Optics, 2013, 6(1): 46-56.

[4] Sato S. Liquid-crystal lens-cells with variable focal length[J]. Japanese Journal of Applied Physics, 1979, 18(9): 1679-1684.

    Sato S. Liquid-crystal lens-cells with variable focal length[J]. Japanese Journal of Applied Physics, 1979, 18(9): 1679-1684.

[5] Ye M, Wang B, Sato S, et al. Liquid-crystal lens with a focal length that is variable in a wide range[J]. Applied Optics, 2004, 43(35): 6407-6412.

    Ye M, Wang B, Sato S, et al. Liquid-crystal lens with a focal length that is variable in a wide range[J]. Applied Optics, 2004, 43(35): 6407-6412.

[6] Lin Y H, Ren H. Fan-Chiang K H, et al. Tunable-focus cylindrical liquid crystal lenses[J]. Japanese Journal of Applied Physics, 2005, 44(1A): 243-244.

    Lin Y H, Ren H. Fan-Chiang K H, et al. Tunable-focus cylindrical liquid crystal lenses[J]. Japanese Journal of Applied Physics, 2005, 44(1A): 243-244.

[7] 杨兰, 王敏帅, 徐恭勤, 等. 低电压驱动液晶变焦透镜的设计与优化[J]. 光学学报, 2017, 37(9): 0922003.

    杨兰, 王敏帅, 徐恭勤, 等. 低电压驱动液晶变焦透镜的设计与优化[J]. 光学学报, 2017, 37(9): 0922003.

    Yang L, Wang M S, Xu G Q, et al. Design and optimization of low voltage driving variable focal length liquid crystal lens[J]. Acta Optica Sinica, 2017, 37(9): 0922003.

    Yang L, Wang M S, Xu G Q, et al. Design and optimization of low voltage driving variable focal length liquid crystal lens[J]. Acta Optica Sinica, 2017, 37(9): 0922003.

[8] Ye M, Wang B, Uchida M, et al. Focus tuning by liquid crystal lens in imaging system[J]. Applied Optics, 2012, 51(31): 7630-7635.

    Ye M, Wang B, Uchida M, et al. Focus tuning by liquid crystal lens in imaging system[J]. Applied Optics, 2012, 51(31): 7630-7635.

[9] Ye M, Wang B, Takahashi T, et al. Properties of variable-focus liquid crystal lens and its application in focusing system[J]. Optical Review, 2007, 14(4): 173-175.

    Ye M, Wang B, Takahashi T, et al. Properties of variable-focus liquid crystal lens and its application in focusing system[J]. Optical Review, 2007, 14(4): 173-175.

[10] Ye M, Noguchi M, Wang B, et al. Zoom lens system without moving elements realised using liquid crystal lenses[J]. Electronics Letters, 2009, 45(12): 646-648.

    Ye M, Noguchi M, Wang B, et al. Zoom lens system without moving elements realised using liquid crystal lenses[J]. Electronics Letters, 2009, 45(12): 646-648.

[11] Lin Y H, Chen M S, Lin H C. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio[J]. Optics Express, 2011, 19(5): 14-21.

    Lin Y H, Chen M S, Lin H C. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio[J]. Optics Express, 2011, 19(5): 14-21.

[12] Li H, Pan F, Wu Y T, et al. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal[J]. Applied Optics, 2016, 55(1): 140-147.

    Li H, Pan F, Wu Y T, et al. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal[J]. Applied Optics, 2016, 55(1): 140-147.

[13] Li QC, Yu SD, Chen XX, et al. Depth measurement via DFD using liquid crystal lens imaging system[C]∥Proceedings of the 78th JSAP Autumn Meeting, Fukuoka, Japan, 2017: 7a-PA3-5.

    Li QC, Yu SD, Chen XX, et al. Depth measurement via DFD using liquid crystal lens imaging system[C]∥Proceedings of the 78th JSAP Autumn Meeting, Fukuoka, Japan, 2017: 7a-PA3-5.

[14] Lin Y H, Chen H S, Lin H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals[J]. Applied Physics Letters, 2010, 96(11): 113505.

    Lin Y H, Chen H S, Lin H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals[J]. Applied Physics Letters, 2010, 96(11): 113505.

[15] Li Y, Wu S T. Polarization independent adaptive microlens with a blue-phase liquid crystal[J]. Optics Express, 2011, 19(9): 8045-8050.

    Li Y, Wu S T. Polarization independent adaptive microlens with a blue-phase liquid crystal[J]. Optics Express, 2011, 19(9): 8045-8050.

[16] Lin C H, Wang Y Y, Hsieh C W. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals[J]. Optics Letters, 2011, 36(4): 502-504.

    Lin C H, Wang Y Y, Hsieh C W. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals[J]. Optics Letters, 2011, 36(4): 502-504.

[17] Li G Q, Mathine D L, Valley P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications[J]. Proceedings of the National Academy of Sciences, 2006, 103(16): 6100-6104.

    Li G Q, Mathine D L, Valley P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications[J]. Proceedings of the National Academy of Sciences, 2006, 103(16): 6100-6104.

[18] Ye M, Sato S. Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations[J]. Japanese Journal of Applied Physics, 2003, 42(10): 6439-6440.

    Ye M, Sato S. Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations[J]. Japanese Journal of Applied Physics, 2003, 42(10): 6439-6440.

[19] Ren H W, Lin Y H, Wu S T. Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels[J]. Applied Physics Letters, 2006, 88(6): 061123.

    Ren H W, Lin Y H, Wu S T. Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels[J]. Applied Physics Letters, 2006, 88(6): 061123.

[20] Bao R, Cui C H, Yu S D, et al. Polarizer-free imaging of liquid crystal lens[J]. Optics Express, 2014, 22(16): 19824-19830.

    Bao R, Cui C H, Yu S D, et al. Polarizer-free imaging of liquid crystal lens[J]. Optics Express, 2014, 22(16): 19824-19830.

[21] Cui C H, Bao R, Yu S D, et al. Polarizer-free imaging using reference image for liquid crystal lens[J]. Optics Communications, 2015, 342: 214-217.

    Cui C H, Bao R, Yu S D, et al. Polarizer-free imaging using reference image for liquid crystal lens[J]. Optics Communications, 2015, 342: 214-217.

[22] Cui C H, Bao R, Yu S D, et al. Denoising for polarizer-free imaging of liquid crystal lens[J]. Society for Information Display Symposium Digest of Technical Papers, 2015, 46(1): 262-265.

    Cui C H, Bao R, Yu S D, et al. Denoising for polarizer-free imaging of liquid crystal lens[J]. Society for Information Display Symposium Digest of Technical Papers, 2015, 46(1): 262-265.

[23] 宋睿, 张合新, 吴玉彬, 等. 激光主动成像图像边缘检测算法研究[J]. 激光与光电子学进展, 2017, 54(8): 081007.

    宋睿, 张合新, 吴玉彬, 等. 激光主动成像图像边缘检测算法研究[J]. 激光与光电子学进展, 2017, 54(8): 081007.

    Song R, Zhang H X, Wu Y B, et al. Image edge detection algorithm for laser active imaging[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081007.

    Song R, Zhang H X, Wu Y B, et al. Image edge detection algorithm for laser active imaging[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081007.

[24] Ye M, Wang B, Uchida M, et al. Low-voltage-driving liquid crystal lens[J]. Japanese Journal of Applied Physics, 2010, 49(10): 100204.

    Ye M, Wang B, Uchida M, et al. Low-voltage-driving liquid crystal lens[J]. Japanese Journal of Applied Physics, 2010, 49(10): 100204.

[25] Liu XH, TanakaM, OkutomiM. Noise level estimation using weak textured patches of a single noisy image[C]∥Proceedings of IEEE International Conference on Image Processing, Orlando, FL, USA. New York: IEEE, 2013, 8556: 665- 668.

    Liu XH, TanakaM, OkutomiM. Noise level estimation using weak textured patches of a single noisy image[C]∥Proceedings of IEEE International Conference on Image Processing, Orlando, FL, USA. New York: IEEE, 2013, 8556: 665- 668.

[26] RankK, LendlM, UnbehauenR. Estimation of image noise variance[C]∥Proceedings of IEE Conference on Vision, Image and Signal Processing, London: IET, 2002, 146( 2): 80- 84.

    RankK, LendlM, UnbehauenR. Estimation of image noise variance[C]∥Proceedings of IEE Conference on Vision, Image and Signal Processing, London: IET, 2002, 146( 2): 80- 84.

白一晨, 陈晓西, 曾俊, 叶茂. 液晶透镜无偏振片成像的优化算法[J]. 光学学报, 2018, 38(8): 0815015. Yichen Bai, Xiaoxi Chen, Jun Zeng, Mao Ye. An Optimization Algorithm for Polarizer-Free Imaging of Liquid Crystal Lens[J]. Acta Optica Sinica, 2018, 38(8): 0815015.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!