作者单位
摘要
1 天津大学微电子学院,天津 300072
2 光电信息控制和安全技术重点实验室,天津 300308
为实现脉冲激光回波信号参数的高精度测量,利用全波形采样技术设计了一种微弱激光信号检测系统,对信号的脉宽、实时功率以及能量等参数进行分析。所提系统硬件平台使用低噪声宽动态范围模拟前端进行信号预处理,基于现场可编程逻辑门阵列、模数转换器等模块实现数据量化与动态时域锁存。针对低采样率平台数据离散程度高引起的波形重构失真,提出了一种基于非均匀周期触发信号的多帧积累算法以降低硬件平台成本。通过对量化数据的拟合补偿,所提算法提升了系统激光信号参数的解算精度。所提系统对脉宽3 ns、峰值功率9 μW的脉冲激光器进行参数检测并与高采样率平台进行对比。结果表明:所提系统对激光信号的脉宽解算误差约为0.041 ns,峰值功率解算误差约为0.53 μW,能量积分误差约为4.52 fJ,所有参数重复测量不确定度小于8%。
脉冲激光器 微弱能量测量 高斯拟合 全波形数据 
激光与光电子学进展
2024, 61(5): 0512006
作者单位
摘要
电子科技大学光电科学与工程学院,四川 成都 611731
液晶透镜是一种新兴的可以电控调焦的液晶器件,无需机械移动就可以实现对焦、变焦和深度测量,因此被广泛应用于摄影摄像、显微成像、虚拟现实等领域。提出一种优化的液晶透镜无偏振片成像技术。该技术结合非锐化掩蔽模型,通过分析图像像素值的变化,估算得到环境光中寻常光分量的占比,并使用非对焦图像和对焦图像进行处理,获得高质量图像。实验结果表明,优化后的技术能够有效增强图像对比度,获得优质图像。
成像系统 液晶透镜 无偏振片成像 非锐化掩蔽模型 
光学学报
2024, 44(3): 0311002
作者单位
摘要
电子科技大学光电科学与工程学院,四川 成都 611731
如何解决大视场和高分辨率之间的矛盾成为了众多科技人员的研究重心之一。基于此,提出一种动态小凹成像系统,在传统的小凹成像系统的基础上,引入方孔液晶透镜对视场中的感兴趣区域进行扫描,实现了在除感兴趣区域外其余区域低分辨率的条件下,在特定视场内的高分辨率成像。制作了方孔液晶透镜,并且对其实际孔径的特性进行了测量与分析。搭建了基于方孔液晶透镜的成像系统,通过此系统实现了动态小凹成像,并用调制传递函数(MTF)测试卡ISO12233对感兴趣区域与其余区域的低分辨率进行了测试。
成像系统 动态小凹成像 方孔液晶透镜 高分辨率成像 
光学学报
2023, 43(19): 1911001
作者单位
摘要
1 电子科技大学光电科学与工程学院,四川 成都 611731
2 华为技术有限公司,广东 深圳 518129
液晶透镜是一种无需机械移动,可电控调焦的光学透镜。报道了一种大口径液晶透镜,将液晶透镜分成多个菲涅耳旁瓣,在保证光焦度和响应速度的情况下,可以极大地提高了液晶透镜的口径。利用叉指电极方式连接并控制各个旁瓣,每个旁瓣的驱动电压相同,简化了驱动方式。本工作设计的菲涅耳液晶透镜直径达到了1 cm,光焦度由所加电压进行控制,变化范围为-1.62D~+1.57D,入射平面波经过该菲涅耳液晶透镜调制,波前接近抛物线分布,呈现出良好的光学特性,本工作将此透镜作为对焦元件在成像系统中进行演示。
自适应成像 菲涅耳液晶透镜 电控调焦 大口径 
激光与光电子学进展
2023, 60(19): 1923002
作者单位
摘要
电子科技大学光电科学与工程学院,四川 成都 611731
针对传统显微镜结构复杂且视场角小等问题,提出一种两路低电压驱动的液晶微透镜阵列结构,透镜的焦距由3个电极控制,中间电极为圆孔阵列图案电极,作为孔径光阑以阻止微透镜外的杂散光。对该阵列的波前和光焦度进行了测试,搭建了一套简易液晶微透镜阵列直接成像系统,每个微透镜都对待观察物体的不同区域成像,通过近平行光照明减小相邻微透镜间的串扰,拼接所有单元图像得到完整图像。该系统无需额外的光学器件,结构简单紧凑。液晶微透镜阵列具有大视场,成像区域具备可扩展性,为实现大视场下的简易显微成像提供了新思路。
液晶微透镜阵列 电控调焦 直接成像 图像拼接 
激光与光电子学进展
2023, 60(20): 2011004
作者单位
摘要
电子科技大学 光电科学与工程学院,四川 成都 611731
液晶透镜的液晶层内相位分布通常不是理想的抛物线结构,这给液晶透镜的成像应用带来限制。本文采用基于液晶的线性响应区域设计的电极结构制作液晶透镜,通过对液晶透镜工作时的前信息进行分析,测出液晶透镜的光焦度和光学像差。在由相机模块和执行调焦功能的液晶透镜组成的成像系统中,通过对经过液晶透镜后所成的图像进行定量研究。分析成像系统形成的ISO12233图标的图像,获得成像系统的分辨能力。结果表明,该液晶透镜驱动简单,光焦度与驱动电压差符合线性关系,可在-4.9~+5.2 D范围调节,同时具有低于0.05λ的光学像差。在成像系统的应用中,在对主镜头分辨能力影响不大的情况下,该液晶透镜表现出优异的调焦性能。
液晶器件 液晶透镜 透镜 调制传递函数 liquid crystal device liquid crystal lenses lens modulation transfer function 
液晶与显示
2023, 38(9): 1171
作者单位
摘要
电子科技大学光电科学与工程学院,四川 成都 611731
针对现有利用液晶透镜获取扩展景深图像的方法需要较长时间的问题,提出一种提升液晶透镜扩展景深融合效率的方法,该方法可以缩短获取扩展景深图像的时间。利用液晶透镜在正负状态之间切换时保持透镜效果的特性,获取图像进行计算。通过考虑每个图像的景深,减少融合所需要的图像数量,从而缩短图像处理的时间。所提方法的图像使用数量减少至现有基于液晶透镜的景深扩展技术的31.2%,计算时间减少至34.38%,合成效率显著提升。所提扩展景深图像质量的方法在主观评价与客观评价上均获得了较好的实验效果。
液晶透镜 景深扩展 景深计算 图像融合 
光学学报
2023, 43(10): 1011003
作者单位
摘要
1 电子科技大学光电科学与工程学院,四川 成都 611731
2 四川天微电子股份有限公司,四川 成都 610200
针对传统双目视觉系统体积大、成本高等缺点,提出了一种利用光轴可移动液晶透镜的单相机立体图像采集系统。该系统由一个固定的相机模块和一个贴有偏振片的液晶透镜构成。通过改变电压的方式移动光轴并采集图像,利用光流法获取图像视差。研究了液晶透镜光轴变化对系统整体光轴的影响,推导了视差与深度的关系。通过验证所采集的图像存在视差来说明所设计系统的可行性,并进行了近距离物体的深度获取。实验结果表明,利用液晶透镜的光轴移动功能可以使系统的整体光轴产生移动,实现立体视觉。所设计系统无需机械移动,具有结构简单紧凑和成本低廉的优点,为立体图像的采集提供了新的方法。
成像系统 液晶透镜 光轴移动 图像采集 深度获取 
光学学报
2023, 43(3): 0311002
作者单位
摘要
1 电子科技大学光电科学与工程学院,四川 成都 611731
2 四川天微电子股份有限公司,四川 成都 610200
提出了一种高性能液晶透镜的设计方法。该方法结合了电极结构的设计并利用了液晶材料线性响应区。所设计的电极结构用于产生抛物线的电压分布,将驱动电压控制在液晶材料的线性响应区内可以实现抛物线的相位分布。通过该方法设计的液晶透镜,其孔径可以是任意大小,且不依赖高阻膜。所设计的电极结构简单,加工只需要一次光刻。透镜由两个低电压驱动,驱动方法简单,其焦距可通过两个驱动电压进行调节。理论上这种液晶透镜的相位分布在变焦过程中保持理想的抛物线分布,且光焦度正比于两个驱动电压的差值。实验上,通过光刻法加工了所设计的电极结构,测量了液晶材料的线性响应区,制作了液晶层厚度为50 μm的液晶透镜。通过偏振干涉原理采集了干涉条纹,并从中提取了相位信息。实验结果表明,透镜的相位服从抛物线分布,且光焦度与驱动电压的差值成正比。实验结果与理论分析一致。
光学器件 液晶器件 透镜 相位 
光学学报
2023, 43(2): 0223001
叶茂 1,2刘恒泉 1,2赵毅强 1,2,*孙泽文 1,2胡彬 1,2
作者单位
摘要
1 天津大学 微电子学院,天津 300072
2 天津市成像与感知微电子技术重点实验室,天津 300072
FMCW激光雷达以其高精度、抗干扰能力强、同时测距测速等特点得到了广泛研究。针对FFT固有栅栏效应引入测距、测速误差的问题,通过分析频谱幅值和相角的规律,并结合正弦函数原理提出了一种易于硬件实现的修正Rife算法,有效地降低了传统Rife算法在估计频率接近FFT量化频率点时的误差。通过仿真和FPGA验证,修正Rife算法在信噪比为−10 dB时相较于传统Rife算法平均误差降低了69.6%,均方根误差降低了50.7%,而计算量仅增加了两个乘法和加法,与N点FFT计算量相比可忽略不计。最后,通过搭建光学测试平台,模拟激光雷达中频回波信号验证了该算法的有效性。测试结果显示,该算法可在112 m范围内实现同时测距测速,测距误差不大于5 cm,测速误差不大于0.16 km/h,满足实时性要求。
FMCW激光雷达 频率估计 修正Rife算法 FPGA FMCW LiDAR frequency estimation modified Rife algorithm FPGA 
红外与激光工程
2022, 51(12): 20220222

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!