红外与毫米波学报, 2014, 33 (3): 278, 网络出版: 2014-06-30   

δ掺杂Be受主GaAs/AlAs多量子阱的拉曼光谱

Raman spectra of Be δ-doped GaAs/AlAs multiple quantum wells
作者单位
山东大学(威海)空间科学与物理学院,山东 威海264209
摘要
通过显微拉曼(Raman)光谱仪,对一系列δ掺杂GaAs/AlAs量子阱中浅受主铍(Be)原子能级间跃迁进行了研究.实验样品是利用分子束外延技术生长在GaAs衬底(100)面上的GaAs/AlAs多量子阱,阱宽范围从30到200,并在阱中央进行了受主Be原子的δ掺杂.在4.2K液氦温度下,对样品进行了Raman光谱测量,并与光致发光(PL)光谱进行了对比,清楚地观测到了受主原子从基态能级1S3/2(Γ6)到第一激发态能级2S3/2(Γ6)之间的跃迁.根据量子力学中的变分原理和打靶法算法,计算了量子阱中类氢受主Be原子1s到2s能级间跃迁能量,并和实验结果进行了比较.计算结果表明,受主1s到2s能级间跃迁的能量随量子阱宽度减小而单调增加,并且与实验结果符合较好.
Abstract
Raman spectra of internal transitions of shallow Be acceptors confined in the center of multiple-quantum GaAs/AlAs wells were studied. A series of Be δ-doped GaAs/AlAs multiple-quantum wells with doping at the well center and wells widths ranging from 30~200  were grown on (100) GaAs substrates by molecular beam epitaxy. Raman and photoluminescence spectra were measured at 4.2 K respectively. The transitions of Be acceptors from the 1S3/2(Γ6) ground state to the 2S3/2(Γ6) first-excited state were clearly observed in Raman spectra. An iterative shooting algorithm and a variational principle were introduced to obtain the 1~2s transition energy of quantum confined Be acceptors as a function of the well width. It was found that the acceptor transition energy increases with the decreasing of quantum wells widths, and the experimental results are in good agreement with the theoretical calculation.
参考文献

[1] Sudradjat F F, Zhang W, Woodward J, et al. Far-infrared intersubband photodetectors based on double-step III-nitride quantum wells[J]. Appl. Phys. Lett., 2012,100(24): 11131114.

[2] Huang H B, Zheng W M, Cong W Y, et al. Raman and photoluminescence studies of transitions of quantum-confined acceptors[J]. Phys. Status. Solidi. B, 2013,250(7): 13521355.

[3] Gammon D, Merlin R, Masselink W T, et al. Raman spectra of shallow acceptors in quantum-well structures[J]. Phys. Rev. B, 1986,33(4): 29192922.

[4] Wang Z P, Jiang D S. Raman scattering of (GaAs)n(AlAs)nsuperlattices[J]. Solid State Commun. 1988,65(7): 661663.

[5] Sood A K, Menendez J, Cardona M, et al. Interface Vibrational Modes in GaAs-AIAs Superlattices[J]. Phys. Rev. Lett., 1985,54(19): 21152118.

[6] Gant T A, Delaney M, Klein M V. Resonant Raman studies of confined LO modes and interface modes in a small-period GaAs/AlAs superlattice[J]. Phys. Rev. B., 1989,39(3): 16961702.

[7] Zheng W M, Halsall M P, Harmer P, et al. Effect of quantum confinement on shallow acceptor transitions in δ-doped GaAs/AlAs multiple-quantum wells[J]. Appl. Phys. Lett., 2004,84(5): 735737.

[8] Dean P J, Cuthbert J D, Thomas D G, et al. Two-Electron Transitions in the Luminescence of Excitons Bound to Neutral Donors in Gallium Phosphide[J]. Phys. Rev. Lett., 1967,18(4): 122124.

[9] Harrison P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics [M]. England: John Wiley & Sons Ltd., 2000, 7183.

黄海北, 郑卫民, 丛伟艳, 孟祥艳, 翟剑波. δ掺杂Be受主GaAs/AlAs多量子阱的拉曼光谱[J]. 红外与毫米波学报, 2014, 33(3): 278. HUANG Hai-Bei, ZHENG Wei-Min, CONG Wei-Yan, MENG Xiang-Yan, ZHAI Jian-Bo. Raman spectra of Be δ-doped GaAs/AlAs multiple quantum wells[J]. Journal of Infrared and Millimeter Waves, 2014, 33(3): 278.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!