光学学报, 2007, 27 (7): 1205, 网络出版: 2007-08-17   

一种步进扫描投影光刻机承片台不平度检测新技术

Novel in-Situ Non-Flatness Measurement Method of Wafer Chuck in Step-and-Scan Lithographic Tool
作者单位
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
摘要
提出一种步进扫描投影光刻机承片台不平度检测新技术。在晶圆与承片台存在不同偏移量时,利用线性差分传感器在线测量晶圆上不同点的局部高度;通过建立临时边界条件,以递推法消除晶圆面形影响,并逐行计算出承片台的相对不平度;通过逐行计算的结果递推相邻行之间的高度差,并将该高度差叠加到每一行,以消除临时边界条件的限制,得到处于同一高度上的承片台不平度;将计算的结果作为初始值,根据最小二乘原理,以邻近的四个测量点作为参考,逐步逼近得到承片台的真实不平度。计算机仿真结果验证了该检测方法的正确性,计算结果逐步收敛并逼近真实值.实验结果表明,该方法的计算结果较好地表示了承片台的真实不平度,重复精度优于0.3 nm;同时该方法也可用于晶圆表面面形的测量。
Abstract
A novel in-situ non-flatness measurement method of wafer chuck in step-and-scan projection lithographic tool is presented. The local heights of wafer surface are measured by the linear variable differential transformer (LVDTs) when the different offsets between wafer and wafer chuck exist. A temporary boundary condition is built to calculate the relative non-flatness of wafer chuck line by line and eliminate the effect of the wafter surface shape with recursion formula. The height difference of the neighboring columns is calculated with recursion formula, which is added to each row to remove the temporary boundary condition limitation and the coarse non-flatness of wafer chuck with the same height is determined. According to the coarse result, the four neighboring points of the measured point are used as reference to approach the accurate non-flatness of wafer chuck with the least square method. Computer simulation and experimental results prove that the calculated result accords with the real non-flatness of wafer chuck well, and the reproducibility by this method is better than 0.3 nm. The method is also valid for measurement of wafer surface shape.
参考文献

[1] David J. Elliott, George D. Whitten. Vacuum chuck[P]. US6032997, 1998.04.16

[2] K. Simson, H.-U. Scheunemann, H.-L. Huber. Impact of chuck flatness on wafer distortion and stepper overlay[C]. Proc. SPIE, 1993, 1924: 282~292

[3] T. Fujisawa, S. Inoue, T. Hagiwara et al.. Desirable edge flatness for CD control in photolithography[C]. Proc. SPIE, 2003, 5040: 600~609

[4] M.-R. Moitreyee, C. H. Tan, Y. K. Tan. Exposure tool chuck flatness study and effects on lithography[C]. Proc. SPIE, 2001,4404: 14~24

[5] Intaru Fujita, Fumio M. Sakai, Shigeyuki Uzawa. Next-generation scanner to sub-100-nm lithography[C]. Proc. SPIE, 2003,5040: 811~821

[6] Butler Hans, Boonman Marcus, Emile Joannes et al.. Lithographic apparatus and device manufacturing method with feed-forward focus control[P]. US7113256, 2004.02.18

[7] Randy Goodall, Frances Alvarez. Characterization of stepper chuck performance[C]. Proc. SPIE, 1993, 1926: 282~292

[8] Bruno M. La Fontaine, Jan Hauschild, Mircea V. Dusa et al.. Study of the influence of substrate topography on the focusing performance of advanced lithography scanners[C]. Proc. SPIE, 2003, 5040: 570~581

[9] Adlai H. Smith, Jr. Hunter, O. Robert et al.. Apparatus and process for determination of dynamic scan field curvature[P]. US7126668, 2004.04.28

[10] Michael L. Nelson, Justin L. Kreuzer, Peter L. Filosi et al.. Method and system for improving focus accuracy in a lithographic system[P]. US6859260, 2001.08

[11] R. Goodall, J. Kawski. Effects and interactions of wafer shape and stepper chucks on wafer flatness control[C]. Proceedings, IEEE/SEMI, ASMC, 1993. 118~123

[12] . Schulz. Absolute flatness testing by an extended rotation method using two angles of rotation[J]. Appl. Opt., 1993, 32(7): 1055-1065.

[13] Dong-June Choi, Chun-Taek Rim, Soohyun Kim. High sensitivity inductive sensing system for position measurement[C]. Proc. IEEE IMTC, 2000. 595~599

[14] Gao Bilie. The mathematical analysis for the active lap deformation on proceeding condition[J]. Acta Optica Sinica, 2005, 25(4): 525~532 (in Chinese)
高必烈. 对主动抛光盘在加工、测量状态下盘面的变形及提升的数学分析[J]. 光学学报, 2005, 25(4): 525~532

[15] Zeng Aijun, Wang Xiangzhao, Xu Deyan. Progress in focus and level sensor for projection lithography system[J]. Laser & Optoelectronics Progress, 2004, 41(7): 24~30 (in Chinese)
曾爱军,王向朝, 徐德衍. 投影光刻机调焦调平传感技术的研究进展[J]. 激光与光电子学进展, 2004, 41(7): 24~30

[16] Xu Dong, Xia Liangzheng, Yang Shizhou. Using curved surface approximation to reconstruct 3-D shape from shading[J]. Acta Optica Sinica, 2002, 22(5): 552~555 (in Chinese)
许东,夏良正, 杨世周. 利用曲面逼近进行三维形状恢复[J]. 光学学报, 2002, 22(5): 552~555

[17] Le He, Xiangzhao Wang, Weijie Shi et al.. Method for measuring the granite surface topography of wafer stage with laser interferometer[C]. Proc. SPIE, 2006, 6150: 512~518

何乐, 王向朝, 王帆, 施伟杰, 马明英. 一种步进扫描投影光刻机承片台不平度检测新技术[J]. 光学学报, 2007, 27(7): 1205. 何乐, 王向朝, 王帆, 施伟杰, 马明英. Novel in-Situ Non-Flatness Measurement Method of Wafer Chuck in Step-and-Scan Lithographic Tool[J]. Acta Optica Sinica, 2007, 27(7): 1205.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!