作者单位
摘要
1 东方晶源微电子科技(北京)有限公司,北京 100176
2 中芯北方集成电路制造(北京)有限公司,北京 100176
3 中国科学院上海光学精密机械研究所信息光学与光电子技术实验室,上海 201800

计算光刻技术是提高分辨率的重要手段,是连接芯片设计与制造的桥梁。首先,介绍了计算光刻技术的起源即第1代光学邻近效应校正(OPC)技术,基于规则的OPC;随后,以14 nm芯片制造过程为例介绍了现代芯片制造采用的各种计算光刻技术,包括基于模型的第2代OPC技术、光源掩模联合优化技术、二次成像图形拆分技术。最后,介绍了计算光刻的发展趋势,包括反向光刻技术、曲线掩模、人工智能应用及协同优化。综合芯片设计、制造、检测的集成优化将是未来计算光刻发展的主要方向。

计算光刻 光学邻近效应校正 全景优化 反向光刻 
激光与光电子学进展
2022, 59(9): 0922001
杨欣华 1,2李思坤 1,2,*廖陆峰 1,2张利斌 3[ ... ]王向朝 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
4 东方晶源微电子科技(北京)有限公司, 北京 100176
提出一种基于深度优先搜索的全芯片光源掩模优化关键图形筛选方法。所提方法采用掩模频谱的投影边界以及增长因子表征掩模的衍射频谱特征。设计了基于深度优先搜索的关键图形筛选算法,实现了全芯片光源掩模优化关键图形筛选,获得了所有关键图形组。相比于现有同类方法,所提方法可以获得覆盖频率分组的所有关键图形组,进而选出更优关键图形组。采用荷兰ASML公司的商用计算光刻软件Tachyon Tflex对所提方法进行了仿真验证,仿真结果表明所提方法获得的工艺窗口优于Tachyon Tflex方法,与现有方法相比,所提方法筛选出的关键图形结果更优。
光学设计 图形筛选 分辨率增强技术 光源掩模联合优化 深度优先搜索 
光学学报
2022, 42(10): 1022002
廖陆峰 1,2李思坤 1,2,*王向朝 1,2,**张利斌 2,3[ ... ]施伟杰 4
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
4 东方晶源微电子科技有限公司, 北京 100176
提出了一种全芯片光源掩模联合优化的关键图形筛选方法,用图形的主要频率表征图形的特征,用主要频率的位置和轮廓信息描述主要频率在频域上的分布特征。设计了相应的主要频率提取方法、覆盖规则、聚类方法以及关键图形筛选方法,实现了全芯片光源掩模联合优化的关键图形筛选。采用荷兰ASML公司的商用计算光刻软件Tachyon进行了仿真验证,与ASML公司同类技术的对比结果表明,本方法获得的工艺窗口优于ASML Tachyon方法。
光学设计 光刻 分辨率增强技术 光源掩模联合优化 图形筛选 
光学学报
2020, 40(21): 2122001
作者单位
摘要
哈尔滨工业大学深圳研究生院激光信息技术研究中心, 深圳 518055
把入射光作为从不同方向入射的空间光,应用傅里叶光学的方法分析了通过机械准直器中一组不同间距的栅格挡光片的物理过程。建立了准直光束的理论计算公式, 给出了采用数值方法精确计算准直光束的主要步骤和计算中应注意的问题,计算了空间频率分布。对于从各方向入射的光辐射,证明了机械准直器的准直性能,对于平行光入射,计算了通过机械准直器的光辐射衍射,衍射超出了准直器的几何阴影区,得到了准直光束空间频率的二维分布图形。与国外一维的方法相比,该方法更准确、快捷,计算结果与实验数据比较,更接近实验结果。
信息光学 准直光束 空间频率 傅里叶变换 机械准直器 
光学学报
2007, 27(8): 1377
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
提出一种精确检测光刻机激光干涉仪测量系统非正交性的新方法。将对准标记曝光到硅片表面并进行显影;利用光学对准系统测量曝光到硅片上的对准标记理论曝光位置与实际读取位置的偏差;由推导的位置偏差与非正交因子、坐标轴尺度比例、过程引入误差的线性模型,根据最小二乘原理计算出干涉仪测量系统的非正交性。实验结果表明,利用该方法使用同一硅片在不同旋转角下进行测量,干涉仪测量系统非正交因子的测量重复精度优于0.01 μrad,坐标轴尺度比例的测量重复精度优于0.7×10-6。使用不同的硅片进行测量,非正交因子的测量再现性优于0.012 μrad,坐标轴尺度比例的测量再现性优于0.6×10-6。
测量 激光干涉仪 非正交性 光学对准 工件台 光刻机 
中国激光
2007, 34(8): 1130
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
提出一种步进扫描投影光刻机承片台不平度检测新技术。在晶圆与承片台存在不同偏移量时,利用线性差分传感器在线测量晶圆上不同点的局部高度;通过建立临时边界条件,以递推法消除晶圆面形影响,并逐行计算出承片台的相对不平度;通过逐行计算的结果递推相邻行之间的高度差,并将该高度差叠加到每一行,以消除临时边界条件的限制,得到处于同一高度上的承片台不平度;将计算的结果作为初始值,根据最小二乘原理,以邻近的四个测量点作为参考,逐步逼近得到承片台的真实不平度。计算机仿真结果验证了该检测方法的正确性,计算结果逐步收敛并逼近真实值.实验结果表明,该方法的计算结果较好地表示了承片台的真实不平度,重复精度优于0.3 nm;同时该方法也可用于晶圆表面面形的测量。
测量与计量 不平度检测 承片台 调平调焦 最小二乘 光刻机 
光学学报
2007, 27(7): 1205
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学实验室,上海 201800
2 中国科学院研究生院,北京 100039
随着光刻特征尺寸的不断减小,硅片表面不平度对光刻性能的影响越来越显著.该文提出了一种新的硅片表面不平度的原位检测技术本文在分析特殊测试标记成像规律的基础上,讨论了测试标记的对准位置偏移量与硅片表面起伏高度的变化规律,提出了一种新的硅片表面不平度原位检测技术.实验表明,该技术可实现硅片表面不平度及硅片表面形貌的高准确度原位测量.该技术考虑了光刻机承片台吸附力的非均匀性对硅片表面不平度的影响,更真实反映曝光工作状态下的硅片表面不平度大小.与现有的原位检测方法相比,硅片表面不平度的测量空间分辨率提高了1.67%倍,可实现硅片表面形貌的原位检测.
硅片表面不平度 FOCAL技术 光刻机 原位检测 Wafer flatness FOCAL technique Optical microlithography In-situ measurement 
光子学报
2006, 35(12): 1975
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
3 哈尔滨工业大学深圳研究生院激光信息技术研究中心, 深圳 518055
4 华中科技大学机械科学与工程学院, 武汉 430074
浸没式光刻技术是将某种液体充满投影物镜最后一个透镜的下表面与硅片之间来增加系统的数值孔径, 可以将193 nm光刻延伸到45 nm节点以下。阐述了浸没式光刻技术的原理, 讨论了液体浸没带来的问题, 最后介绍了浸没式光刻机的研发进展。
光刻 浸没式光刻 投影物镜 浸没液体 偏振光照明 气泡 
激光与光电子学进展
2006, 43(8): 13
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院,北京,100039
为了满足光刻机投影物镜彗差测量精度的要求,提出一种基于套刻误差测试标记的彗差检测技术,分析了彗差对套刻误差测试标记空间像的影响,详细叙述了该技术的测量原理,并利用PROLITH光刻仿真软件对不同数值孔径与部分相干因子设置下套刻误差相对于彗差的灵敏度系数进行了仿真实验。结果表明,与目前国际上通常使用的投影物镜彗差检测技术相比,该技术在传统照明条件下灵敏度系数Kz7与Kz14的变化范围分别增加了27.5%和34.3%,而在环形照明条件下则分别增加了20.4%和22.1%,因此彗差的测量精度可提高20%以上。
光学测量 光刻机 彗差 套刻误差 投影物镜 
光学学报
2006, 26(7): 1037
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
提出了一种新的光刻机投影物镜像差原位检测(AMF)技术。详细分析了该技术利用特殊测试标记检测投影物镜球差、像散、彗差的基本原理,论述了该技术利用对准位置坐标计算像差引起的成像位置偏移量的方法。实验结果表明AMF技术可实现球差、彗差、像散等像差参量的精确测量。AMF技术考虑了光刻胶等工艺因素对像差引起的成像位置偏移量的影响,有效避免了目前基于硅片曝光方式的彗差原位检测技术对离焦量、像面倾斜等像质参量限制的依赖。
信息光学 像差 投影物镜 光刻机 原位检测 
光学学报
2006, 26(5): 679

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!