中国激光, 2007, 34 (8): 1130, 网络出版: 2007-09-05   

一种检测光刻机激光干涉仪测量系统非正交性的新方法

Novel Method for Measuring Non-Orthogonality of Interferometer System in Step and Scan Lithographic Tool
作者单位
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
摘要
提出一种精确检测光刻机激光干涉仪测量系统非正交性的新方法。将对准标记曝光到硅片表面并进行显影;利用光学对准系统测量曝光到硅片上的对准标记理论曝光位置与实际读取位置的偏差;由推导的位置偏差与非正交因子、坐标轴尺度比例、过程引入误差的线性模型,根据最小二乘原理计算出干涉仪测量系统的非正交性。实验结果表明,利用该方法使用同一硅片在不同旋转角下进行测量,干涉仪测量系统非正交因子的测量重复精度优于0.01 μrad,坐标轴尺度比例的测量重复精度优于0.7×10-6。使用不同的硅片进行测量,非正交因子的测量再现性优于0.012 μrad,坐标轴尺度比例的测量再现性优于0.6×10-6。
Abstract
A novel method for measuring the non-orthogonality of the interferometer system in a step and scan lithographic tool is presented. First a linear module among the non-orthogonal factor, scaling factor and process related system error has been developed. By real lithographic process the alignment marks are transferred to the wafer, and after development the positions of marks are read out by optic alignment system in the same lithographic tool. The measurement data are used to calculate the non-orthogonal factor and scaling factor of the interferometer by the linear model according to the least square principle. Experimental results show that by this method with the same wafer in different rotation, the measurement repeatability of the non-orthogonal factor is better than 0.01 μrad, and the measurement repeatability of the y to x scaling factor is better than 0.7×10-6. With different wafer in the same condition, the measurement reproducibility of the non-orthogonal factor is better than 0.012 μrad, and the measurement reproducibility of the y to x scaling factor is better than 0.6×10-6.
参考文献

[1] . Rubingh, Y. van Dommelen, S. Tempelaars et al.. Performance of a high productivity 300 mm dual stage 193 nm 0.75 NA TWINSCAN at: 1100B system for 100 nm applications[J]. J. Micro/Nanolith. MEMS MOEMS, 2003, 2(1): 8-18.

[2] Atsushi Otake, Emi Araya, Hikaru Momose et al.. Design and development of novel monomers and copolymers for 193-nm lithography [C]. SPIE, 2004, 5376:591~598

[3] Itaru Fujita, Fumio M. Sakai, Shigeyuki Uzawa. Next-generation scanner to sub-100-nm lithography [C]. SPIE, 2003, 5040:811~821

[4] Liu Dan, Cheng Zhaogu, Gao Haijun et al.. Progress of wafer stage and reticle stage for step-and-scan-lithography system [J]. Laser & Optoelectronics Progress, 2003, 40(5):14~20
刘丹,程兆谷,高海军 等. 步进扫描投影光刻机工件台和掩模台的进展[J]. 激光与光电子学进展, 2003, 40(5):14~20

[5] Gerard de Zwart,Martin A. van den Brink, Richard A. George et al.. Performance of a step-and-scan system for DUV lithography [C]. SPIE, 1997, 3051:817~835

[6] Boudewijn Sluijk, Tom Castenmiller, Richard du Croo de Jongh et al.. Performance results of a new generation of 300-mm lithography systems [C]. SPIE, 2001, 4346:544~557

[7] . C. Fan, M. J. Chen. A 6-degree-of-freedom measurement system for the accuracy of X-Y stages[J]. Precision Engineering, 2000, 24(1): 15-23.

[8] Philip D. Henshaw, Donald P. DeGloria, Sandra A. Kelly et al.. Real-time stage position measurement with nanometer-scale accuracy [C]. SPIE, 1997, 3051:913~921

[9] J. Montoya, R. K. Heilmann, M. L. Schattenburg. Measuring two-axis stage mirror non-flatness using linear/angular interferometers [C]. ASPE, 2004, (34):382~385

[10] M. A. van den Brink, J. M. D. Stoeldraijer, H. F. D. Linders et al.. Overlay and field by field leveling in wafer steppers using an advanced metrology system [C]. SPIE, 1992, 1673:330~346

[11] . Rizvi. A problem in position metrology[J]. SRC Newsletter, 1992, 10(1): 6-8.

[12] Henry A. Hill. Interferometric servo control system for stage metrology [P]. United States Patent, US007046367, 2006-05-16

[13] C. J. Evans, A. D. Davies, T. Schmitz et al.. Interferometric figure metrology; enabling in-house traceability [C]. SPIE, 2001, 4450:81~93

[14] Tao Zhu, Yanqiu Li. Study on control strategy of wafer stage and reticle stage of EUVL [C]. SPIE, 2006, 6149:512~515

[15] Honda Kazuhiro. Instrument and method for metrology [P]. United States Patent, US006928184, 2005-08-09

[16] Jaap H. M. Neijzen, Robert D. Morton, Peter Dirksen et al.. Improved wafer stepper alignment performance using an enhanced phase grating alignment system [C]. SPIE, 1999, 3677:382~394

[17] Shi Weijie, Wang Xiangzhao, Zhang Dongqin et al.. An in-situ method for measuring the overlay performance of a lithographic system with mirror-symmetry FOCAL marks [J]. Acta Optica Sinica, 2006, 26(3):398~402
施伟杰,王向朝,张冬青 等. 基于镜像焦面检测对准标记的套刻性能原位测量技术[J]. 光学学报, 2006, 26(3):398~402

[18] Shi Weijie, Wang Xiangzhao, Zhang Dongqin et al.. In-situ measurement method of dense-line depth of focus of a lithographic projection system [J]. Chinese J. Lasers, 2006, 33(1):85~90
施伟杰,王向朝,张冬青 等. 基于光学对准的光刻机投影物镜密集线焦深原位检测技术[J]. 中国激光, 2006, 33(1):85~90

[19] Sun Shanze, Dai Zhongwei. Probability and Statistics [M]. Beijing: Science Press, 2002. 150~180
孙山泽,戴中维. 概率与统计[M]. 北京:科学出版社, 2002. 150~180

[20] Seth Roberts, Harold Pashler. How Persuasive is a Good Fit A Comment on Theory Testing [M]. USA: University of California, 2000. 20~35

[21] Wei Musheng. Theory and Calculation of Generalized Least Squares Problem [M]. Beijing: Science Press, 2006. 136~178
魏木生. 广义最小二乘问题的理论和计算[M]. 北京:科学出版社, 2006. 136~178

何乐, 王向朝, 马明英, 施伟杰, 王帆. 一种检测光刻机激光干涉仪测量系统非正交性的新方法[J]. 中国激光, 2007, 34(8): 1130. 何乐, 王向朝, 马明英, 施伟杰, 王帆. Novel Method for Measuring Non-Orthogonality of Interferometer System in Step and Scan Lithographic Tool[J]. Chinese Journal of Lasers, 2007, 34(8): 1130.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!