激光与光电子学进展, 2006, 43 (8): 13, 网络出版: 2006-08-31   

浸没式光刻技术的研究进展 下载: 1831次

Development of Immersion Lithography
作者单位
1 中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
2 中国科学院研究生院, 北京 100039
3 哈尔滨工业大学深圳研究生院激光信息技术研究中心, 深圳 518055
4 华中科技大学机械科学与工程学院, 武汉 430074
摘要
浸没式光刻技术是将某种液体充满投影物镜最后一个透镜的下表面与硅片之间来增加系统的数值孔径, 可以将193 nm光刻延伸到45 nm节点以下。阐述了浸没式光刻技术的原理, 讨论了液体浸没带来的问题, 最后介绍了浸没式光刻机的研发进展。
Abstract
Immersion lithography uses some kind of fluid filling the space between the bottom surface of the last lens and wafer, to enlarge the numerical aperture of system and will extend the 193nm lithography below 45nm node. The principle of immersion lithography is analyzed, several fundamental issues of immersion lithography are discussed, and development status of the immersion lithographic tools is described.
参考文献

[1] International technology roadmap for semiconductor 2005 edition lithography[Z]. http://www.itrs.net/Common/2005ITRS/Litho2005.pdf

[2] Paul Luehrmann, Peter van Oorschot, Hans Jasper et al... 0.35mm lithography using off-axis illumination[C]. Proc. SPIE, 1993, 1927:103~124

[3] Marc D. Levenson. Extending the lifetime of optical lithography technologies with wavefront engineering[J]. Jpn. J. Appl. Phys., 1994, 33(12B):6765~6773

[4] 冯伯儒, 张锦, 侯德胜 等. 相移掩模和光学邻近效应校正光刻技术[J]. 光电工程, 2001, 28(1):1~5

[5] . 90nm工艺及其相关技术[J]. 微纳电子技术, 2003, 40(4): 40-44.

[6] B. J. Lin. Semiconductor foundry, lithography, and partners[C]. Proc. SPIE, 2002, 4688:11~24

[7] 王晓峰编译. IBM打破光刻极限——实现29.9nm光刻[J]. 激光与光电子学进展, 2006, 43(5):76

[8] S. Bradbury. Evolution of the Microscope[M]. Pergamon Press, Oxford, 1967

[9] W. Taberelli, E. W. Loback. Photolithographic method for the manufacture of integrated circuits[P]. U.S. Patent, No. 4346164. 1982

[10] . Kawata, J. Carter, A. Yen et al.. Optical projection lithography using lenses with numerical apertures greater than unity[J]. Microelectron Eng., 1989, 9: 31-36.

[11] . A. Hoffnagle, W. D. Hinsberg, M. Sanchez et al.. Liquid immersion deep-ultraviolet interferometric lithography[J]. J. Vac. Sci. Technol. B, 1999, 17(6): 3306-3309.

[12] . Switkes, M. Rothschild. Immersion lithography at 157nm[J]. J. Vac. Sci. Technol. B, 2001, 19(6): 2353-2356.

[13] M. Switkes, M. Rothschild. Resolution enhancement of 157nm lithography by liquid immersion[C]. Proc. SPIE, 2002, 4691: 459~465

[14] Bob Streefkerk, Jan Baselmans, Wendy Gehoel-van Ansem et al.. Extending optical lithography with immersion[C]. Proc. SPIE, 2004, 5377:285~305

[15] Soichi Owa, Hiroyuki Nagasaka, Yuuki Ishii et al.. Full-field exposure tools for immersion lithography[C]. Proc. SPIE, 2005, 5754:655~668

[16] Hitoshi Nakano, Hideo Hata, Kazuhiro Takahashi et al.. Development of ArF immersion exposure tool[C]. Proc. SPIE, 2005, 5754:693~700

[17] . Advantage and feasibility of immersion lithography[J]. J. Microlith., Microfab., Microsyst., 2004, 3(1): 97-103.

[18] M. Switkes, R. R. Kunz, R. F. Sinta et al.. Immersion liquids for lithography in the deep ultraviolet[C]. Proc. SPIE, 2003, 5040: 690~699

[19] Burn J. Lin. Immersion lithography and its impact on semiconductor manufacturing[C]. Proc. SPIE, 2004, 5377:46~67

[20] . . Benefits and limitations of immersion lithography[J]. J. Microlith., Microfab., Microsyst., 2004, 3(1): 104-114.

[21] Soichi Owa, Hiroyuki Nagasaka, Yuuki Ishii et al.. Feasibility of immersion lithography[C]. Proc. SPIE, 2004, 5377:264~272

[22] Tomoyuki Matsuyama, Toshiro Ishiyama, Yasuhiro Ohmura. Nikon projection lens update[C]. Proc. SPIE, 2004, 5377:730~741

[23] Soichi Owa, Hiroyuki Nagasaka, Katsushi Nakano et al.. Current status and future prospect of immersion of immersion lithography[C]. Proc. SPIE, 2006, 6154(615408)

[24] Heiko Feldmann, Aurelian Dodoc, Alexander Epple et al.. Catadioptric projection lenses for immersion lithography[C]. Proc. SPIE, 2005, 5962(59620Y)

[25] Hisashi Nishinaga, Noriaki Tokuda, Soichi Owa et al.. Development of polarized-light illuminator and its impact[C]. Proc. SPIE, 2005, 5754:669~680

[26] Tokuyuki Honda, Yasuhiro Kishikawa, Toshinobu Tokita et al.. ArF immersion lithography: critical optical issues[C]. Proc. SPIE, 2004, 5377:319~328

[27] Takahito Chibana, Hitoshi Nakano, Hideo Hata et al.. Development status of a 193-nm immersion exposure tool[C]. Proc. SPIE, 2006, 6154(61541V)

[28] Jan Mulkens, Bob Streefkerk, Martin Hoogendorp et al.. Immersion lithography exposure system: today's capabilities and tomorrow′s expectations[C]. Proc. SPIE, 2005, 5754:710~724

[29] 翁寿松. 193nm浸入式光刻技术独树一帜[J]. 电子工业专用设备, 2005,(6):11~14

[30] Hans Jasper, Theo Modderman, Mark van de Kerkhof et al.. Immersion lithography with an ultrahigh-NA in-line catadioptric lens and a high-transmission flexible polarization illumination system[C]. Proc. SPIE, 2006, 6154(61541W)

[31] Harry Sewell, Jan Mulkens, Kiane McCafferty et al.. The next phase for immersion lithography[C]. Proc. SPIE, 2006, 6154(615406)

袁琼雁, 王向朝, 施伟杰, 李小平. 浸没式光刻技术的研究进展[J]. 激光与光电子学进展, 2006, 43(8): 13. 袁琼雁, 王向朝, 施伟杰, 李小平. Development of Immersion Lithography[J]. Laser & Optoelectronics Progress, 2006, 43(8): 13.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!