Photonics Research, 2020, 8 (6): 06000799, Published Online: Apr. 30, 2020  

Strain enhancement for a MoS2-on-GaN photodetector with an Al2O3 stress liner grown by atomic layer deposition Download: 834次

Author Affiliations
1 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Copy Citation Text

Zhiwen Li, Jiangliu Luo, Shengqun Hu, Qiang Liu, Wenjie Yu, Youming Lu, Xinke Liu. Strain enhancement for a MoS2-on-GaN photodetector with an Al2O3 stress liner grown by atomic layer deposition[J]. Photonics Research, 2020, 8(6): 06000799.

References

[1] Y. Xiao, M. Zhou, J. Liu, J. Xu, L. Fu. Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater., 2019, 62: 759-775.

[2] M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, L. Fu. Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater., 2017, 29: 6095-6103.

[3] Q. Zhang, L. Fu. Novel insights and perspectives into weakly coupled ReS2 toward emerging applications. Chem, 2019, 5: 505-525.

[4] Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, L. Fu. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem. Mater., 2017, 29: 4641-4644.

[5] LiZ.WuJ.WangC.ZhangH.YuW.LuY.LiuX., “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).

[6] A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, K.-W. Ang. Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure. Adv. Opt. Mater., 2018, 6: 1800461.

[7] X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, K.-W. Ang. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy, 2019, 62: 667-673.

[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6: 147-150.

[9] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, K. Kim. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun., 2012, 3: 1011.

[10] T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, M. Li. Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. Anal. Chem., 2014, 86: 12064-12069.

[11] Z. P. Ling, R. Yang, J. W. Chai, S. J. Wang, W. S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D. Z. Chi, K. W. Ang. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express, 2015, 23: 13580-13586.

[12] F. Liu, Y. Wang, X. Liu, J. Wang, H. Guo. A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit. IEEE Electron Device Lett., 2015, 36: 1091-1093.

[13] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, M. Chhowalla. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater., 2014, 13: 1128-1134.

[14] J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, H. Kim. Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor. ACS Appl. Mater. Interfaces, 2016, 8: 28130-28135.

[15] Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, Y. H. Lee. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater., 2018, 5: 031001.

[16] M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev., 2018, 118: 6236-6296.

[17] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2017, 2: 17033.

[18] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, K. I. Bolotin. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 2013, 13: 3626-3630.

[19] J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, K. L. Wang. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun., 2015, 6: 7430.

[20] I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, R. Bratschitsch. Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett., 2018, 18: 1751-1757.

[21] X. Dou, K. Ding, D. Jiang, X. Fan, B. Sun. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano, 2016, 10: 1619-1624.

[22] S. Deng, A. V. Sumant, V. Berry. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 2018, 22: 14-35.

[23] R. Roldán, A. Castellanos-Gomez, E. Cappelluti, F. Guinea. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter., 2015, 27: 313201.

[24] J. Feng, X. Qian, C.-W. Huang, J. Li. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics, 2012, 6: 866-872.

[25] S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, J. M. Kim. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett., 2017, 17: 5634-5640.

[26] S. Manzeli, A. Allain, A. Ghadimi, A. Kis. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett., 2015, 15: 5330-5335.

[27] A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, J.-F. Lin. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun., 2014, 5: 3731.

[28] G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, A. Javey. Strain-engineered growth of two-dimensional materials. Nat. Commun., 2017, 8: 608.

[29] S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, Y.-L. Chueh. Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors. ACS Nano, 2017, 11: 8768-8776.

[30] D. Kufer, G. Konstantatos. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett., 2015, 15: 7307-7313.

[31] S. Das, H.-Y. Chen, A. V. Penumatcha, J. Appenzeller. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett., 2013, 13: 100-105.

[32] S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, Q. Li. Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations. Appl. Surf. Sci., 2018, 428: 593-597.

[33] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter, 2002, 14: 2717-2744.

[34] M. A. Baker, R. Gilmore, C. Lenardi, W. Gissler. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci., 1999, 150: 255-262.

[35] J. Kong, K. T. Park, A. C. Miller, K. Klier. Molybdenum disulfide single crystal (0002) plane XPS spectra. Surf. Sci. Spectra, 2000, 7: 69-74.

[36] D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, T. G. Ivanov. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano, 2016, 10: 3580-3588.

[37] Raman and Absorbance of multilayer MoS2, Dataset 1, .

[38] I. Calizo, A. A. Balandin, W. Bao, F. Miao, C. N. Lau. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett., 2007, 7: 2645-2649.

[39] L. Su, Y. Zhang, Y. Yu, L. Cao. Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale, 2014, 6: 4920-4927.

[40] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, P. M. Ajayan. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014, 8: 1263-1272.

[41] D. J. Late. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Appl. Mater. Interfaces, 2015, 7: 5857-5862.

[42] A. S. Pawbake, M. S. Pawar, S. R. Jadkar, D. J. Late. Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies. Nanoscale, 2016, 8: 3008-3018.

[43] S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, S. Tongay. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure. ACS Appl. Mater. Interfaces, 2016, 8: 2533-2539.

[44] X. Feng, V. V. Kulish, P. Wu, X. Liu, K.-W. Ang. Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study. Nano Res., 2016, 9: 2687-2695.

[45] Z. Ding, Q.-X. Pei, J.-W. Jiang, Y.-W. Zhang. Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C, 2015, 119: 16358-16365.

[46] S. Bertolazzi, J. Brivio, A. Kis. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5: 9703-9709.

[47] A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, K. I. Bolotin. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep., 2014, 4: 6608.

[48] H. S. Lee, M. S. Kim, H. Kim, Y. H. Lee. Identifying multiexcitons in MoS2 monolayers at room temperature. Phys. Rev. B, 2016, 93: 140409.

[49] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang. ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 2007, 7: 1003-1009.

[50] F. González-Posada, R. Songmuang, M. Den Hertog, E. Monroy. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett., 2012, 12: 172-176.

[51] W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, L.-J. Li. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater., 2013, 25: 3456-3461.

[52] A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, A. K. M. Newaz. Large array fabrication of high performance monolayer MoS2 photodetectors. Appl. Phys. Lett., 2017, 111: 043110.

[53] A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y.-H. Lo. Silicon nanowire detectors showing phototransistive gain. Appl. Phys. Lett., 2008, 93: 121110.

[54] L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, K.-W. Ang. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Appl. Mater. Interfaces, 2017, 9: 36130-36136.

Zhiwen Li, Jiangliu Luo, Shengqun Hu, Qiang Liu, Wenjie Yu, Youming Lu, Xinke Liu. Strain enhancement for a MoS2-on-GaN photodetector with an Al2O3 stress liner grown by atomic layer deposition[J]. Photonics Research, 2020, 8(6): 06000799.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!