红外, 2015, 36 (4): 1, 网络出版: 2015-05-20  

星载红外成像系统IRFPA非均匀性在轨定标与实时校正

In-orbit Nonuniformity Calibration and Real-time Correction of IRFPA of Spaceborne Infrared Imaging System
作者单位
1 桂林电子科技大学生命与环境科学学院,广西 桂林 541004
2 西安电子科技大学物理与光电工程学院,陕西 西安 710071
摘要
针对星载红外成像系统在轨定标等特殊环境条件的应用要求,研制了 一种基于现场可编程门阵列(Field-Programmable Gate Array, FPGA)的红外焦平面阵列(Infrared Focal Plane Array, IRFPA) 非均匀性在线定标与实时校正芯片系统。由于对输入信号进行了标准化设计,该系统可用于各类红 外成像系统的IRFPA非均匀性在线定标与实时校正处理。这种系统在时钟信号的驱动下以流水线方式运行, 在对非均匀红外图像进行实时校正的同时,能够在线获取定标图像并能对存储器中的校正系数进行 在线更新。该系统具有体积小、运算速度快、稳定可靠以及易于升级等优点,为星载红外成像系统IRFPA非 均匀性的在轨定标开辟了一条有效的技术途径。
Abstract
Abstract:According to the in-orbit calibration requirement of a spaceborne infrared imaging system, an online nonuniformity calibration and real-time correction chip system is developed for Infrared Focal Plane Arrays (IRFPA). The system is based on a Field-Programmable Gate Array (FPGA). Because the design of its input signal is standardized, it can be used for on-line nonuniformity calibration and real-time correction of IRFPAs for various infrared imaging systems. Driven by a clock signal, the system operates in a pipeline way. It can acquire calibration images and update the correction coefficient in memory on line while correcting the nonuniform images in real time. It has the advantages of small volume, fast operation, stability, reliability and easy updating. This work has opened up an effective way for the in-orbit nonuniformity calibration of IRFPAs used in spaceborne infrared imaging systems.
参考文献

[1] Su Lijuan, Yan Yuan, Bin Xiangli, et al. Spectrum Reconstruction Method for Airborne Temporally-Spatially Modulated Fourier Transform Imaging Spectrometers [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3720-3728.

[2] Yann Ferrec, Jean Taboury, Herve Sauer, et al. Experimental Results from an Airborne Static Fourier Transform Imaging Spectrometer [J]. Applied Optics, 2011, 50(30): 5894-5904.

[3] Orzanowski T, Sosnowski T, Madura H. Response Nonuniformity Correction Method for Infrared Focal Plane Arrays [J]. Pomiary Automatyka Kontrola, 2011, 57(10): 1108-1111.

[4] Pipa D R, Eduardo A B, Pagliari C L. Recursive Algorithms for Bias and Gain Nonuniformity Correction in Infrared Videos [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4758-4769.

[5] Vidal N P, Goicoechea E, Manzanos M J, et al. Fourier Transform Infrared Spectroscopy As a Tool to Study Farmed and Wild Sea Bass Lipid Composition [J]. Science of the Food and Agriculture, 2014, 94(7): 1340-1348.

[6] Celedon N, Redlich R, Figueroa M. FPGA-based Neural Network for Nonuniformity Correction on Infrared Focal Plane Arrays [C]. Cesme: 15th Euromicro Conference on Digital System Design, 2012.

[7] Pleshkova S. FPGA & DSP Infrared Image Processing Module for People and Objects Detection [C]. Tenerife: Proceedings of the 15th WSEAS International Conference on Systems, 2011.

[8] Shi Chunlei, Jiang Guangyuan, Yang Guangmin, et al. Two-point Multi-section Linear Nonuniformity Correction of IRFPA Based on FPGA [J]. Applied Mechanics and Materials, 2013, 263-266: 3194-3197.

[9] Cao Yanpeng, Tisse C L. Shutterless Solution for Simultaneous Focal Plane Array Temperature Estimation and Nonuniformity Correction in Uncooled Long-wave Infrared Camera [J]. Applied Optics, 2013, 52(25): 6266-6271.

[10] 殷世民, 应小凡, 陈洪波, 等. 傅里叶变换红外成像光谱仪非均匀性在线定标与校正研究 [J]. 红外技术, 2014, 36(7): 567-572.

[11] Yin Shimin, Liu Shangqiang. The Multi-point Nonuniformity Correction Algorithms for IRFPA Based on Low Order Interpolation [J]. Acta Photonica Sinica, 2002, 31(6): 715-718.

殷世民, 喻双, 梁永波, 朱健铭, 王炳键, 陈真诚. 星载红外成像系统IRFPA非均匀性在轨定标与实时校正[J]. 红外, 2015, 36(4): 1. YIN Shi-min, YU Shuang, LIANG Yong-bo, ZHU Jian-ming, WAN Bing-jian, CHEN Zhen-cheng. In-orbit Nonuniformity Calibration and Real-time Correction of IRFPA of Spaceborne Infrared Imaging System[J]. INFRARED, 2015, 36(4): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!