激光与光电子学进展, 2017, 54 (5): 051205, 网络出版: 2017-05-03  

噪声时域反射法实现多根电缆故障的同时检测 下载: 632次

Simultaneous Detection of Multi-Cable Faults Based on Noise Time-Domain Reflectometry
马培国 1,2,*徐航 1,2王冰洁 1,2武光辉 1,2
作者单位
1 太原理工大学物理与光电工程学院, 山西 太原 030024
2 新型传感器与智能控制教育部和山西省重点实验室, 山西 太原 030024
摘要
为了同时检测捆绑成束的电缆以及多芯电缆不同支路上的故障, 提出并实验验证了一种多通道噪声时域反射法。该方法利用多路滤波后的放大自发辐射噪声作为电缆束或者多芯电缆不同支路的探测信号, 基于相关探测技术, 可同时检测不同支路上电缆故障, 且没有相互干扰。实验结果表明该方法可以同时检测位于不同电缆支路上的断路、短路和阻抗失配等故障。当URM43型同轴电缆单个支路的噪声探测信号功率为-9.1 dBm时, 最远探测距离为720 m。此外, 还进行实验证明了该方法可以实现电缆故障的在线检测。
Abstract
In order to simultaneously detect the cable faults on different branches of the cable bundles and multi-core cables, a multi-channel noise time domain reflectometry is proposed and experimentally demonstrated. Amplified spontaneous emission (ASE) noises after multipath filtering serve as probe signals to detect different branches of cable bundles or multi-core cables. Based on correlation detection technology, the cable faults of different branches are detected simultaneously with no mutual interference. The experimental results indicate that the proposed method can detect open circuits, short circuits and impedance mismatches on different cable branches simultaneously. Moreover, for the single URM43 coaxial cable, a maximum detection range of about 720 m is obtained when the power of the noise detection signal is -9.1 dBm. In addition, it is experimentally proved that the proposed method can realize live test of cable fault.
参考文献

[1] 王 瑞. 通信电缆故障探测仪的设计[D]. 哈尔滨: 哈尔滨理工大学, 2011: 1-4.

    Wang Rui. Design of communication cable fault detector[D]. Harbin: Harbin University of Science and Technology, 2011: 1-4.

[2] Furse C, Haupt R. Down to the wire: aircraft wiring[J]. IEEE Spectrum, 2001, 38(2): 34-39.

[3] 李静霞, 徐 航, 马福昌. 基于混沌电路的电介质传输线故障检测[J]. 太原理工大学学报, 2013, 44(3): 341-343.

    Li Jingxia, Xu Hang, Ma Fuchang. Measuring wire faults using electronic chaotic signal[J]. Journal of Taiyuan University of Technology, 2013, 44(3): 341-343.

[4] Paulter N G. An assessment on the accuracy of time-domain reflectometry for measuring the characteristic impedance of transmission lines[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(5): 1381-1388.

[5] 于俊慧, 董永贵. 飞行时间的计数式测量及其在电缆故障检测中的应用[J]. 仪表技术与传感器, 2014(3): 101-103.

    Yu Junhui, Dong Yonggui. Counting method for time-of-light measurement and its application in cable fault test[J]. Instrument Technique and Sensor, 2014(3): 101-103.

[6] Tsai P, Lo C, Chung Y C, et al. Mixed-signal reflectometer for location of faults on aging wiring[J]. IEEE Sensors Journal, 2005, 5(6): 1479-1482.

[7] Naik S, Furse C M, Farhang-Boroujeny B. Multicarrier reflectometry[J]. IEEE Sensors Journal, 2006, 6(3): 812-818.

[8] Yan S, Wu S, Wen B. Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2493-2500.

[9] Song E, Shin Y J, Stone P E, et al. Detection and location of multiple wiring faults via time-frequency-domain reflectometry[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(1): 131-138.

[10] Smith P, Furse C, Gunther J. Analysis of spread spectrum time domain reflectometry for wire fault location[J]. IEEE Sensors Journal, 2005, 5(6): 1469-1478.

[11] Furse C, Smith P, Lo C, et al. Spread spectrum sensors for critical fault location on live wire networks[J]. Structural Control and Health Monitoring, 2005, 12(3): 257-267.

[12] Xu H, Wang B J, Li J X, et al. Location of wire faults using chaotic signal generated by an improved colpitts oscillator[J]. International Journal of Bifurcation and Chaos, 2014, 24(4): 1450053.

[13] Xu H, Li J X, Liu L, et al. Chaos time-domain reflectometry for fault location on live wires[J]. Journal of Applied Analysis and Computation, 2015, 5(2): 243-250.

[14] Zhang J G, Xu H, Wang B J, et al. Wiring fault detection with Boolean-chaos time-domain reflectometry[J]. Nonlinear Dynamics, 2015, 80(1-2): 553-559.

[15] Li J X, Wang Y C, Ma F C. Experimental demonstration of 1.5 GHz chaos generation using an improved colpitts oscillator[J]. Nonlinear Dynamics, 2013, 72(3): 575-580.

[16] 王国超, 颜树华, 杨 俊, 等. 基于飞秒光梳互相关的空间精密测距理论模型分析[J]. 光学学报, 2015, 35(4): 0412002.

    Wang Guochao, Yan Shuhua, Yang Jun, et al. Theoretical modeling analysis for precise space ranging based on cross-correlation of femtosecond optical frequency comb[J]. Acta Optica Sinica, 2015, 35(4): 0412002.

[17] 高洋洋, 周卫宁, 雷莉莉, 等. 光纤陀螺用超辐射发光二极管启动偏振特性及其影响研究[J]. 激光与光电子学进展, 2015, 52(11): 112302.

    Gao Yangyang, Zhou Weining, Lei Lili, et al. Research on polarization characteristic of SLD start-up used in fiber optic gyroscope and its effect[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112302.

[18] 林 宏, 何武光, 李卫中, 等. 用于大气CO2浓度探测的高功率宽谱红外激光源[J]. 激光与光电子学进展, 2015, 52(8): 081401.

    Lin Hong, He Wuguang, Li Weizhong, et al. High power wide spectrum infrared laser source for atmospheric CO2 concentration measurement[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081401.

[19] Garmatyuk D S, Narayanan R M. ECCM capabilities of an ultrawideband bandlimited random noise imaging radar[J]. IEEE Transactions on Aerospace Electronic Systems, 2002, 38(4): 1243-1255.

马培国, 徐航, 王冰洁, 武光辉. 噪声时域反射法实现多根电缆故障的同时检测[J]. 激光与光电子学进展, 2017, 54(5): 051205. Ma Peiguo, Xu Hang, Wang Bingjie, Wu Guanghui. Simultaneous Detection of Multi-Cable Faults Based on Noise Time-Domain Reflectometry[J]. Laser & Optoelectronics Progress, 2017, 54(5): 051205.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!