光子学报, 2016, 45 (7): 070722003, 网络出版: 2016-08-18  

视频空间相机Φ330 mm口径主镜组件设计

Design of the Φ330 mm Primary Mirror Assembly of Spaceborne Video Camera
作者单位
中国科学院长春光学精密机械与物理研究所 小卫星技术国家地方联合工程研究中心, 长春 130033
摘要
为满足视频空间相机中反射镜组件的轻量化、高刚度、高稳定性和短加工周期的要求, 采用基于ZERODUR微晶玻璃的背部单拱形镜体轻量化方案, 设计了一种外圆芯轴粘接的柔性支撑结构.通过有限元工程分析与基于响应面优化设计, 确定了支撑结构的最优尺寸.对反射镜组件进行了模态试验, 并完成了镜面的非球面光学加工与检测.试验结果表明:主镜组件的一阶自然频率为332.5 Hz, 与分析结果之间的相对误差为2.5%; 主镜组件在绕光轴分别旋转0°、120°与240°方向进行光学检测时, 面形精度均方根值均优于λ/40,实现了地面重力对反射镜面形检测零影响, 组件满足设计要求.
Abstract
Crucial requirements were proposed on the Primary Mirror Assembly(PMA), such as high lightweighting, high stiffness, high stability and short manufacturing cycle. In order to satisfy those, a meniscus-like mirror lightweighting scheme based on ZERODUR was designed, and the flexural support structure bonded to the outer ring of the mirror shaft was optimized. Through a finite element analysis and design approach, the optimal dimensions of the flexural support were obtained. In order to verify the finite element analysis results, a modal test was performed on the PMA, and the required aspherical optical surface was polished and tested. Test results show that, the first natural frequency of PMA is 332.5 Hz, the relative deviation is only 2.5% to compare with the analysis result; the surface figure of PMA maintains a constain RMS of λ/40 while rotating at 0°, 120° and 240° around the horizontal optical axis respectively; the influence of zero-gravity state is achieved on surface figure of PMA. The PMA satisfies the design requirements.
参考文献

[1] 魏磊, 金光, 谢晓光, 等. 对地观测微小卫星主承力结构的优化设计与试验[J]. 光学精密工程, 2015, 23(11): 3183-3191.

    WEI Lei, JIN Guang, XIE Xiao-guang, et al. Optimized design of primary load-bearing structure for earth observation micro-satellite. [J]. Optics and Precision Engineering, 2015, 23(11): 3183-3191.

[2] KIRAN M. SkySat-1: Very high-resolution imagery from a small satellite[C]. SPIE, 2014, 9241: 924111E.

[3] KIHM H. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering, 2013, 52(9): 091806.

[4] 李志来, 徐宏, 关英俊. 1.5 m口径空间相机主镜组件的结构设计[J]. 光学精密工程, 2015, 23(6): 1635-1641.

    LI ZHi-lai, XU Hong, GUAN Ying-jun. Structural design of 1.5 m mirror subassembly for space camera[J]. Optics and Precision Engineering, 2015, 23(6): 1635-1641.

[5] HUANG T M, HSU M Y. Design and analysis of isostatic mounts on a spaceborne lightweight primary mirror[C]. SPIE, 2013, 8836: 836-839.

[6] 袁健, 任建岳. 碳化硅反射镜轻量化结构的改进与优化[J]. 光子学报, 2015, 44(8): 0812004.

    YUAN Jian, REN Jian-yue. Improvement and optimization of lightweight structure for SiC reflective mirror[J]. Acta Photonica Sinica, 2015, 44(8): 0812004.

[7] 朱俊青, 沙巍, 陈长征, 等. 空间长条形反射镜背部三支撑点的设置[J]. 光学精密工程, 2015, 23(9): 2562-2569.

    ZHU Jun-qing, SHA Wei, CHEN Chang-zheng, et al. Position layout of rear three point mounting for space rectangular mirror[J]. Optics and Precision Engineering, 2015, 23(9): 2562-2569.

[8] 张丽敏, 王富国, 安其昌, 等. Bipod柔性结构在小型反射镜支撑中的应用[J]. 光学精密工程, 2015, 23(2): 438-443.

    ZHANG Li-min, WANG Fu-guo, AN Qi-chang, et al. Application of Bipod to supporting structure of minitype reflector[J]. Optics and Precision Engineering, 2015, 23(2): 438-443.

[9] 邵亮, 吴小霞, 陈宝刚, 等. SiC轻量化主镜的被动支撑系统[J]. 光学精密工程, 2015, 23(5): 1380-1386.

    SHAO Liang, WU Xiao-xia, CHEN Bao-gang, et al. Passive support system of light-weighted SiC primary mirror[J]. Optics and Precision Engineering, 2015, 23(5): 1380-1386.

[10] 李宗轩, 陈雪, 张雷, 等. 大口径空间反射镜Cartwheel型柔性支撑设计[J]. 光学学报, 2014, 34(6): 0622003.

    LI Zong-xuan, CHEN Xue, ZHANG Lei, et al. Design of Cartwheel flexural support for a large aperture space mirror[J]. Acta Optica Sinica, 2014, 34(6): 0622003.

[11] PAUL R. Y. Opto-mechanical systems design[M]. Bellingham: SPIE Press, 2005.

[12] JURANEK H, KLEER G, DLL W. Use of glass ceramic as a structural material for a high precision space telescope[C]. SPIE, 1994, 2210, 407-418.

[13] TONY H, ANDREW C, GEORGE G, et al. Game-changing approaches to affordable advanced lightweight mirrors: extreme Zerodur lightweighting and relief from the classical polishing parameter constraint [C]. SPIE, 2011, 8125, 81250U.

[14] 李蓉, 王森, 施浒立, 等. 深空太阳天文台磁场望远镜主反射镜热分析[J]. 光子学报, 2014, 43(3): 0322002.

    LI Rong, WANG Sen, SHI Hu-li, et al. Thermal analysis on the main reflector in deep-space solar observatory[J]. Acta Photonica Sinica, 2014, 43(3): 0322002.

[15] 李文杰, 王少鑫, 穆全全, 等. 用等效应力法分析温度变化对胶粘反射镜面形的影响[J]. 光子学报, 2015, 44(12): 1212001.

    LI Wen-jie, WANG Shao-xin, MU Quan-quan, et al. Using the equivalent stress to analyze the effect of temperature change on surface accuracy of the bonded mirror[J]. Acta Photonica Sinica, 2015, 44(12): 1212001.

[16] KEITH B. D. Integrated optomechanical analysis[M]. Bellingham: SPIE Press, 2008.

李宗轩, 邢利娜, 解鹏. 视频空间相机Φ330 mm口径主镜组件设计[J]. 光子学报, 2016, 45(7): 070722003. LI Zong-xuan, XING Li-na, XIE Peng. Design of the Φ330 mm Primary Mirror Assembly of Spaceborne Video Camera[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070722003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!