作者单位
摘要
北京空间机电研究所 国防科技工业光学超精密加工技术创新中心(先进制造类), 北京 100094
为了在地面制造环境下实现大口径空间非球面反射镜的零重力面形加工, 建立了基于重力卸载的高精度旋转检测工艺方法。首先对N次等间隔旋转法的基本原理进行了介绍, 并结合一块Ф1 290 mm ULE材料的非球面反射镜加工实例, 分别给出了旋转法实施环节中的旋转角度和偏心误差控制方法, 实际角度误差和偏心误差分别优于0.1°和0.1 mm。然后, 在低精度阶段采用了3次旋转法对检测结果进行处理, 主镜面形精度快速收敛至0.029λ-RMS; 同时由于应用旋转法而导致镜面上的对称性误差累积放大, 进行了针对性去除, 面形精度进一步收敛至0.023λ-RMS。最后, 采用了6次旋转法对检测结果进行处理并指导光学加工, 反射镜6个方向下的实测面形精度为0.012λ-RMS, 去除重力变形误差后面形精度达到了0.010λ-RMS, 该面形可以认为是卫星入轨后零重力空间环境下的反射镜面形。文中所述加工工艺方法不仅适用于米级口径, 还适用于更大口径空间非球面反射镜零重力面形的高精度加工。
光学加工 光学检测 空间光学遥感器 非球面反射镜 零重力面形 optical fabrication optical test space optical remote sensor aspheric mirror zero-gravity surface figure 
光学 精密工程
2019, 27(12): 2517
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
为了预估碳化硅反射镜在空间零重力环境下的面形精度,本文开展了在地面环境下利用方位反向技术提取碳化硅反射镜零重力面形的研究。首先,介绍了方位反向技术提取零重力面形的理论依据; 其次,利用有限元分析软件,分析了方位反向对反射镜面形的影响; 然后,按照试验流程,先后检测了反射镜在0°和180°状态的面形精度,计算两次检测数据的平均值,得到了反射镜零重力面形。结果表明: 反射镜地面零重力面形误差RMS值为123 nm,能够满足设计指标要求。最后,对数据可信度进行了分析,确认了试验数据真实可信。该结果预示了反射镜在空间零重力环境下的面形精度,对反射镜光学加工与装调有重要的指导意义。
方位反向 碳化硅反射镜 零重力面形 光学检测 orientation reversal SiC mirror zero-gravity surface figure optical test 
中国光学
2016, 9(5): 606
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 小卫星技术国家地方联合工程研究中心, 长春 130033
为满足视频空间相机中反射镜组件的轻量化、高刚度、高稳定性和短加工周期的要求, 采用基于ZERODUR微晶玻璃的背部单拱形镜体轻量化方案, 设计了一种外圆芯轴粘接的柔性支撑结构.通过有限元工程分析与基于响应面优化设计, 确定了支撑结构的最优尺寸.对反射镜组件进行了模态试验, 并完成了镜面的非球面光学加工与检测.试验结果表明:主镜组件的一阶自然频率为332.5 Hz, 与分析结果之间的相对误差为2.5%; 主镜组件在绕光轴分别旋转0°、120°与240°方向进行光学检测时, 面形精度均方根值均优于λ/40,实现了地面重力对反射镜面形检测零影响, 组件满足设计要求.
空间相机 主镜组件 柔性支撑 有限元 光学检测 零重力 Space telescope Primary mirror assembly Flexible structure Finite element method Optical testing Zero Gravity 
光子学报
2016, 45(7): 070722003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!