光学 精密工程, 2019, 27 (9): 1990, 网络出版: 2019-10-14   

基于柔顺机构的压电式微喷点胶系统设计与性能分析

Design and performance analysis of piezoelectric micro-spray dispensing system based on compliant mechanism
作者单位
江西理工大学 机电工程学院, 江西 赣州 341000
摘要
基于柔顺机构设计了一种新型压电式微喷点胶系统, 该系统由供胶装置、驱动装置和撞针阀组成。点胶系统的运动特征是利用柔顺机构的弹性变形驱动撞针往复直线运动实现撞针阀的开启和闭合, 完成微喷点胶功能。采用伪刚体方法得到点胶系统的驱动力、输出位移和频率特性, 结果表明, 系统的最大驱动力、输出位移和频率分别为56.4 N, 808 μm, 245 Hz, 说明所设计的点胶系统能满足所需的驱动力、行程和点胶速度。制作样机, 通过实验分析驱动电压信号的占空比、幅值、频率和胶液黏度对胶滴直径的影响, 得到了正常胶滴形成需满足的条件。实验结果表明: 系统的最高点胶频率为210 Hz, 最小胶滴直径为630 μm, 胶滴一致性误差为5.62%, 说明所设计的点胶系统具有较好的性能, 为微喷点胶系统设计和应用提供新的思路。
Abstract
A novel piezoelectric microspray dispensing system was designed based on a compliant mechanism. The system consisted of a glue supply device, driving device, and pin-impact valve. The motion characteristic of the dispensing system was that the elastic deformation of the compliant mechanism drived the colliding needle to move in a straight line to and fro, so that the opening and closing of the colliding needle valve could perform the function of microspray dispensing. The driving force, output displacement, and frequency characteristics of the dispensing system were obtained by using a pseudo-rigid-body method. The results show that the maximum of driving force, output displacement, and frequency of the system are 56.4 N, 808 μm, and 245 Hz, respectively. Thus, the driving force, stroke, and dispensing speed of the dispensing system can be guaranteed. The prototype was built and the effects of duty cycle, amplitude, frequency of driving voltage signal, and viscosity of glue on the droplet diameter were analyzed experimentally; the conditions for the formation of normal droplets were also determined. The experimental results show that the highest dispensing frequency of the system is 210 Hz, the minimum diameter of the droplets is 630 μm, and the consistency error of the droplets is 5.62 %. In a word, the advantages of the proposed dispensing system are verified, which provides a new concept for the design and application of microspray dispensing system.
参考文献

[1] 姚玉峰, 路士州, 刘亚欣, 等. 微量液体自动分配技术研究综述[J]. 机械工程学报, 2013, 49(14): 140-153.

    YAO Y F, LU SH ZH, LIU Y X, et al.. Research on automated micro-liquid dispensing technology[J]. Journal of Mechanical Engineering, 2013, 49(14): 140-153.(in Chinese)

[2] 张勤, 徐策, 徐晨影, 等. 超微量点胶方法与实验[J]. 光学 精密工程, 2013, 21(8): 2071-2078.

    ZHANG Q, XU C, XU CH Y, et al.. Approach and experiment of ultra-micro dispensing[J]. Opt. Precision Eng., 2013, 21(8): 2071-2078.(in Chinese)

[3] KUNCHALA P, KAPPAGANTULA K. 3D printing high density ceramics using binder jetting with nanoparticle densifiers[J]. Materials & Design, 2018, 155: 443-450.

[4] 孙道恒, 高俊川, 杜江, 等. 微电子封装点胶技术的研究进展[J]. 中国机械工程, 2011, 22(20): 2513-2519.

    SUN D H, GAO J CH, DU J, et al.. Advances in fluid dispensing technology for micro-electronics packaging[J]. China Mechanical Engineering, 2011, 22(20): 2513-2519.(in Chinese)

[5] 姚玉峰, 路士州, 刘亚欣, 等. 微量液体自动分配技术研究综述[J]. 机械工程学报, 2013, 49(14): 140-153.

    YAO Y F, LU SH ZH, LIU Y X, et al.. Research on automated micro-liquid dispensing technology[J]. Journal of Mechanical Engineering, 2013, 49(14): 140-153.(in Chinese)

[6] 史亚莉, 李福东, 杨鑫, 等. 用于微胶接的pL级点胶方法[J]. 光学 精密工程, 2012, 20(12): 2744-2750.

    SHI Y L, LI F D, YANG X, et al.. PL class adhesive dispensing approach for micro bonding[J]. Opt. Precision Eng., 2012, 20(12): 2744-2750.(in Chinese)

[7] KHAN S, NGUYEN T P, LUBEJ M, et al.. Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes[J]. Microelectronic Engineering, 2018, 194: 71-78.

[8] NGUYEN Q H, HAN Y M, CHOI S B, et al.. Dynamic characteristics of a new jetting dispenser driven by piezostack actuator[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(3): 248-259.

[9] 路崧, 江海, 顾守东, 等. 液压式压电驱动喷射点胶阀设计与实验[J]. 四川大学学报(工程科学版), 2015, 47(3): 167-173.

    LU S, JIANG H, GU SH D, et al.. Experiment and design for the hydraumatic and piezoelectric driven jet dispensing value[J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(3): 167-173.(in Chinese)

[10] 顾守东, 杨志刚, 江海, 等. 压电驱动液压放大式喷射系统[J]. 光学 精密工程, 2015, 23(6): 1627-1634.

    GU SH D, YANG ZH G, JIANG H, et al.. Piezoelectric driven hydraulic amplification jetting system[J]. Opt. Precision Eng., 2015, 23(6): 1627-1634.(in Chinese)

[11] DENG G L, CUI W J, ZHOU C, et al.. A piezoelectric jetting dispenser with a pin joint[J]. Optik, 2018, 175: 163-171.

[12] MITCHELL-SMITH J, SPEIDEL A, BISTEROV I, et al.. Electrolyte multiplexing in electrochemical jet processing[J]. Procedia CIRP, 2018, 68: 483-487.

[13] 余跃庆, 李清清. 一种新型柔性铰链的设计、制作与试验研究[J]. 机械工程学报, 2018, 54(13): 79-85.

    YU Y Q, LI Q Q. On the design, manufacturing and experiment of a new type flexural joint[J]. Journal of Mechanical Engineering, 2018, 54(13): 79-85.(in Chinese)

[14] 李耀, 吴洪涛, 杨小龙, 等. 圆弧柔性铰链的优化设计[J]. 光学 精密工程, 2018, 26(6): 1370-1379.

    LI Y, WU H T, YANG X L, et al.. Optimization design of circular flexure hinges[J]. Opt. Precision Eng., 2018, 26(6): 1370-1379.(in Chinese)

[15] 胡俊峰, 杨展宏. 尺蠖式直线微驱动器的设计[J]. 光学 精密工程, 2018, 26(1): 122-131.

    HU J F, YANG ZH H. A novel inchworm linear micro actuator[J]. Opt. Precision Eng., 2018, 26(1): 122-131.(in Chinese)

[16] 胡俊峰, 徐贵阳, 郝亚洲. 基于响应面法的微操作平台多目标优化[J]. 光学 精密工程, 2015, 23(4): 1096-1104.

    HU J F, XU G Y, HAO Y ZH. Multi-objective optimization of micro-manipulation stage based on response surface method[J]. Opt. Precision Eng., 2015, 23(4): 1096-1104. (in Chinese)

胡俊峰, 梁龙, 赵永祥. 基于柔顺机构的压电式微喷点胶系统设计与性能分析[J]. 光学 精密工程, 2019, 27(9): 1990. HU Jun-feng, LIANG Long, ZHAO Yong-xiang. Design and performance analysis of piezoelectric micro-spray dispensing system based on compliant mechanism[J]. Optics and Precision Engineering, 2019, 27(9): 1990.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!