中国激光, 2014, 41 (8): 0803007, 网络出版: 2014-07-08   

60 mm厚304不锈钢板超窄间隙光纤激光焊接接头组织性能研究 下载: 543次

Microstructure and Mechanical Property of 60 mm-Thick 304 Stainless Steel Joint by Ultra-Narrow Gap Fiber Laser Beam Welding
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
利用IPG公司YLS-6000光纤激光器及5 mm超窄间隙焊接了60 mm厚304不锈钢板,并利用光学显微镜、扫描电镜、能谱仪和低温拉伸试验机分析了接头组织性能。结果表明,超窄间隙激光焊接方法可得到成形良好无明显缺陷的焊接接头,焊缝上下宽度一致约3.8 mm。焊缝组织为柱状奥氏体与均匀分布的骨架状和板条状铁素体。热影响区并无明显晶粒长大,少量铁素体沿熔合线向母材方向扩散生长。Cr、Ni等合金元素在焊缝及热影响区分布均匀,无明显偏析。焊缝与母材显微硬度相当,略低于热影响区。接头拉伸强度随温度降低而上升,最高达1260 MPa,在183 K、213 K、243 K、273 K温度下接头拉伸强度分别为母材的86%、96.7%、94.5%和92.6%。试样弯曲180°无裂纹及其他缺陷产生。
Abstract
304 stainless steel plates of 60 mm thick are welded using IPG YLS-6000 fiber laser and 5 mm wide groove. The microstructure and mechanical property of joint are tested by optical microscope, scanning electron microscope, energy disperse spectroscopy and tensile testing machine at low temperature. The result shows that complete defect free butt joints are obtained with ultra-narrow gap laser welding. The width of weld is uniform and is about 3.8 mm. Microstructure of joint are consist of columnar austenitic, the skeletal and the lath ferrite. There is a little ferrite diffuses and grows to the direction of the base metal and no obvious coarse grain in heat affected zone (HAZ). Main alloy elements such as Cr, Ni are even distributed in the weld and HAZ. The microhardness of the HAZ is slightly higher than that of weld metal and base metal. The tensile strength at temperature of 183 K, 213 K, 243 K and 273 K temperature are 86%, 96.7%, 94.5% and 92.6% of base metal, respectively, which increases when temperature decreases and the maximum is up to 1260 MPa. Samples are bended by 180° without any cracks or other defects.
参考文献

[1] M Onozuka, J P Alfile, P Aubert, et al.. Manufacturing and maintenance technologies developed for a thick-wall structure of the iter vacuum vessel[J]. Fusion Engineer and Design, 2001, 55(4): 397-410.

[2] F Coste, L Sabatier, O Dubet, et al.. NdYag laser welding of 60 mm thickness 316L parts using multiple passes[C]. Laser Inst America, 2001. 502-509.

[3] 秦浩, 雷正龙, 陈彦宾, 等. 低合金高强钢激光-MAG复合多层焊接头力学性能[J]. 中国激光, 2011, 38(10): 1003005.

    Qin Hao, Lei Zhenglong, Chen Yanbin. Mechanical property of laser-MAG hybrid welding on low alloy high strength steel[J]. Chinese J Lasers, 2011, 38(10): 1003005.

[4] 胡连海, 黄坚,倪慧峰, 等. 10Ni3CrMoV钢T型接头CO2激光复合焊工艺与组织[J]. 中国激光, 2011, 38(3): 0303003.

    Hu Lianhai, Huang Jian, Ni Huifeng, et al.. CO2 laser hybrid welding processes and microstructures of 10Ni3CrMoV Steel in T joint form[J]. Chinese J Lasers, 2011, 38(3): 0303003.

[5] 温鹏, 郑世卿, 荻崎贤二, 等.填充热丝激光窄间隙焊接的实验研究[J]. 中国激光, 2011, 38(11): 1103004.

    Wen Peng, Zheng Shiqing, Shinozaki Kenji, et al.. Experimental research on laser narrow gap welding with filling hot wire[J]. Chinese J Lasers, 2011, 38(11): 1103004.

[6] T Jokinen, M Karhu, V Kujanpaa. Welding of thick austenitic stainless steel using Ndyttrium-aluminum-garnet laser with filler wire and hybrid process[J]. Journal of Laser Applications, 2003, 15(4): 220-224.

[7] Coste F, Janin F, Hamadou M, et al.. Deep penetration laser welding with NdYAG lasers combination up to 11 kW laser power[C]. SPIE, 2003, 4831: 422-427.

[8] 吴世凯, 肖荣诗, 陈铠.大厚度不锈钢板的激光焊接[J]. 中国激光, 2009, 36(9): 2422-2425.

    Wu Shikai, Xiao Rongshi, Chen Kai. Laser welding of heavy section of stainless steel plants[J]. Chinese J Lasers, 2009, 36(9): 2422-2425.

[9] Yoshiaki Arata, Hiroshi Maruo, Isamu Miyamoto, et al.. High power CO2 laser welding of thick plate-multipass welding with filler wire[J]. Ttansactions of JWRI, 1986, 15(2): 27-34.

[10] A S Salminen, V P Kujanpaa. Effect of wire feed position on laser welding with filler wire[J]. Journal of Laser Applications, 2003, 15(1): 2-10.

[11] 李俐群, 陶汪, 朱先亮. 厚板高强钢激光填丝多层焊工艺[J]. 中国激光, 2009, 36(5): 1251-1255.

    Li Liqun, Tao Wang, Zhu Xianliang. Wire filling laser multilayer welding of high strength steel thick plate[J]. Chinese J Lasers, 2009, 36(5): 1251-1255.

[12] Zhang X D, Ashida E, Tarasawa S, et al.. Welding of thick stainless steel plates up to 50 mm with high brightness lasers[J]. Journal of Laser Applications, 2011, 23(2): 022002.

[13] T Tsukamoto, H Kawanaka, Y Maeda. Laser narrow gap welding of thick carbon steels using high brightness laser with beam oscillation[C]. ICALEO, 2011. 141-146.

[14] Lippold J C, Savage W F. Solidification of austenitic stainless steel weldments.1: A proposed mechanism[J]. Welding Journal, 1979, 58(12): 362-374.

[15] 利波尔德, 科特基. 不锈钢焊接冶金学及焊接性[M]. 陈剑虹译. 北京: 机械工业出版社, 2008. 140-155.

    John C Lippold, Damian J Kotecki. Welding Metallurgy and Weldability of Stainless Steels[M]. Chen Jianhong Transl. Beijing: China Machine Press, 2008. 140-155.

张国伟, 肖荣诗. 60 mm厚304不锈钢板超窄间隙光纤激光焊接接头组织性能研究[J]. 中国激光, 2014, 41(8): 0803007. Zhang Guowei, Xiao Rongshi. Microstructure and Mechanical Property of 60 mm-Thick 304 Stainless Steel Joint by Ultra-Narrow Gap Fiber Laser Beam Welding[J]. Chinese Journal of Lasers, 2014, 41(8): 0803007.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!